A survey of graph neural networks for recommender systems: Challenges, methods, and directions

C Gao, Y Zheng, N Li, Y Li, Y Qin, J Piao… - ACM Transactions on …, 2023 - dl.acm.org
Recommender system is one of the most important information services on today's Internet.
Recently, graph neural networks have become the new state-of-the-art approach to …

Cross-domain recommendation: challenges, progress, and prospects

F Zhu, Y Wang, C Chen, J Zhou, L Li, G Liu - ar** session dataset for recommendation and text generation
W **, H Mao, Z Li, H Jiang, C Luo… - Advances in …, 2024 - proceedings.neurips.cc
Modeling customer shop** intentions is a crucial task for e-commerce, as it directly
impacts user experience and engagement. Thus, accurately understanding customer …

Causal inference in recommender systems: A survey and future directions

C Gao, Y Zheng, W Wang, F Feng, X He… - ACM Transactions on …, 2024 - dl.acm.org
Recommender systems have become crucial in information filtering nowadays. Existing
recommender systems extract user preferences based on the correlation in data, such as …

RecBole 2.0: towards a more up-to-date recommendation library

WX Zhao, Y Hou, X Pan, C Yang, Z Zhang… - Proceedings of the 31st …, 2022 - dl.acm.org
In order to support the study of recent advances in recommender systems, this paper
presents an extended recommendation library consisting of eight packages for up-to-date …

A survey on cross-domain recommendation: taxonomies, methods, and future directions

T Zang, Y Zhu, H Liu, R Zhang, J Yu - ACM Transactions on Information …, 2022 - dl.acm.org
Traditional recommendation systems are faced with two long-standing obstacles, namely
data sparsity and cold-start problems, which promote the emergence and development of …

Transfer-meta framework for cross-domain recommendation to cold-start users

Y Zhu, K Ge, F Zhuang, R **e, D **, X Zhang… - Proceedings of the 44th …, 2021 - dl.acm.org
Cold-start problems are enormous challenges in practical recommender systems. One
promising solution for this problem is cross-domain recommendation (CDR) which …

CATN: Cross-domain recommendation for cold-start users via aspect transfer network

C Zhao, C Li, R **ao, H Deng, A Sun - Proceedings of the 43rd …, 2020 - dl.acm.org
In a large recommender system, the products (or items) could be in many different
categories or domains. Given two relevant domains (eg, Book and Movie), users may have …

Contrastive cross-domain recommendation in matching

R **e, Q Liu, L Wang, S Liu, B Zhang, L Lin - Proceedings of the 28th …, 2022 - dl.acm.org
Cross-domain recommendation (CDR) aims to provide better recommendation results in the
target domain with the help of the source domain, which is widely used and explored in real …

Transfer learning

SJ Pan - Learning, 2020 - api.taylorfrancis.com
Supervised machine learning techniques have already been widely studied and applied to
various real-world applications. However, most existing supervised algorithms work well …