Recent advances and applications of deep learning methods in materials science
Deep learning (DL) is one of the fastest-growing topics in materials data science, with
rapidly emerging applications spanning atomistic, image-based, spectral, and textual data …
rapidly emerging applications spanning atomistic, image-based, spectral, and textual data …
Emerging materials intelligence ecosystems propelled by machine learning
The age of cognitive computing and artificial intelligence (AI) is just dawning. Inspired by its
successes and promises, several AI ecosystems are blossoming, many of them within the …
successes and promises, several AI ecosystems are blossoming, many of them within the …
An autonomous laboratory for the accelerated synthesis of novel materials
To close the gap between the rates of computational screening and experimental realization
of novel materials,, we introduce the A-Lab, an autonomous laboratory for the solid-state …
of novel materials,, we introduce the A-Lab, an autonomous laboratory for the solid-state …
ChatGPT chemistry assistant for text mining and the prediction of MOF synthesis
We use prompt engineering to guide ChatGPT in the automation of text mining of metal–
organic framework (MOF) synthesis conditions from diverse formats and styles of the …
organic framework (MOF) synthesis conditions from diverse formats and styles of the …
Structured information extraction from scientific text with large language models
Extracting structured knowledge from scientific text remains a challenging task for machine
learning models. Here, we present a simple approach to joint named entity recognition and …
learning models. Here, we present a simple approach to joint named entity recognition and …
A review of the recent progress in battery informatics
C Ling - npj Computational Materials, 2022 - nature.com
Batteries are of paramount importance for the energy storage, consumption, and
transportation in the current and future society. Recently machine learning (ML) has …
transportation in the current and future society. Recently machine learning (ML) has …
Quantifying the advantage of domain-specific pre-training on named entity recognition tasks in materials science
A bottleneck in efficiently connecting new materials discoveries to established literature has
arisen due to an increase in publications. This problem may be addressed by using named …
arisen due to an increase in publications. This problem may be addressed by using named …
Toward autonomous laboratories: Convergence of artificial intelligence and experimental automation
The ever-increasing demand for novel materials with superior properties inspires retrofitting
traditional research paradigms in the era of artificial intelligence and automation. An …
traditional research paradigms in the era of artificial intelligence and automation. An …
Material evolution with nanotechnology, nanoarchitectonics, and materials informatics: what will be the next paradigm shift in nanoporous materials?
Materials science and chemistry have played a central and significant role in advancing
society. With the shift toward sustainable living, it is anticipated that the development of …
society. With the shift toward sustainable living, it is anticipated that the development of …
Precursor recommendation for inorganic synthesis by machine learning materials similarity from scientific literature
Synthesis prediction is a key accelerator for the rapid design of advanced materials.
However, determining synthesis variables such as the choice of precursor materials is …
However, determining synthesis variables such as the choice of precursor materials is …