Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
[HTML][HTML] Data augmentation: A comprehensive survey of modern approaches
A Mumuni, F Mumuni - Array, 2022 - Elsevier
To ensure good performance, modern machine learning models typically require large
amounts of quality annotated data. Meanwhile, the data collection and annotation processes …
amounts of quality annotated data. Meanwhile, the data collection and annotation processes …
Diffusion models in medical imaging: A comprehensive survey
Denoising diffusion models, a class of generative models, have garnered immense interest
lately in various deep-learning problems. A diffusion probabilistic model defines a forward …
lately in various deep-learning problems. A diffusion probabilistic model defines a forward …
Segment anything
Abstract We introduce the Segment Anything (SA) project: a new task, model, and dataset for
image segmentation. Using our efficient model in a data collection loop, we built the largest …
image segmentation. Using our efficient model in a data collection loop, we built the largest …
Segment anything in medical images
Medical image segmentation is a critical component in clinical practice, facilitating accurate
diagnosis, treatment planning, and disease monitoring. However, existing methods, often …
diagnosis, treatment planning, and disease monitoring. However, existing methods, often …
Planning-oriented autonomous driving
Modern autonomous driving system is characterized as modular tasks in sequential order,
ie, perception, prediction, and planning. In order to perform a wide diversity of tasks and …
ie, perception, prediction, and planning. In order to perform a wide diversity of tasks and …
Rtmdet: An empirical study of designing real-time object detectors
In this paper, we aim to design an efficient real-time object detector that exceeds the YOLO
series and is easily extensible for many object recognition tasks such as instance …
series and is easily extensible for many object recognition tasks such as instance …
Vm-unet: Vision mamba unet for medical image segmentation
In the realm of medical image segmentation, both CNN-based and Transformer-based
models have been extensively explored. However, CNNs exhibit limitations in long-range …
models have been extensively explored. However, CNNs exhibit limitations in long-range …
Camouflaged object detection with feature decomposition and edge reconstruction
Camouflaged object detection (COD) aims to address the tough issue of identifying
camouflaged objects visually blended into the surrounding backgrounds. COD is a …
camouflaged objects visually blended into the surrounding backgrounds. COD is a …
Bidirectional copy-paste for semi-supervised medical image segmentation
In semi-supervised medical image segmentation, there exist empirical mismatch problems
between labeled and unlabeled data distribution. The knowledge learned from the labeled …
between labeled and unlabeled data distribution. The knowledge learned from the labeled …
Faster segment anything: Towards lightweight sam for mobile applications
Segment Anything Model (SAM) has attracted significant attention due to its impressive zero-
shot transfer performance and high versatility for numerous vision applications (like image …
shot transfer performance and high versatility for numerous vision applications (like image …