Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Ai alignment: A comprehensive survey
AI alignment aims to make AI systems behave in line with human intentions and values. As
AI systems grow more capable, so do risks from misalignment. To provide a comprehensive …
AI systems grow more capable, so do risks from misalignment. To provide a comprehensive …
Reconstructing computational system dynamics from neural data with recurrent neural networks
Computational models in neuroscience usually take the form of systems of differential
equations. The behaviour of such systems is the subject of dynamical systems theory …
equations. The behaviour of such systems is the subject of dynamical systems theory …
Foundational challenges in assuring alignment and safety of large language models
This work identifies 18 foundational challenges in assuring the alignment and safety of large
language models (LLMs). These challenges are organized into three different categories …
language models (LLMs). These challenges are organized into three different categories …
Deep long-tailed learning: A survey
Deep long-tailed learning, one of the most challenging problems in visual recognition, aims
to train well-performing deep models from a large number of images that follow a long-tailed …
to train well-performing deep models from a large number of images that follow a long-tailed …
Sharpness-aware gradient matching for domain generalization
The goal of domain generalization (DG) is to enhance the generalization capability of the
model learned from a source domain to other unseen domains. The recently developed …
model learned from a source domain to other unseen domains. The recently developed …
Last layer re-training is sufficient for robustness to spurious correlations
Neural network classifiers can largely rely on simple spurious features, such as
backgrounds, to make predictions. However, even in these cases, we show that they still …
backgrounds, to make predictions. However, even in these cases, we show that they still …
Towards out-of-distribution generalization: A survey
Traditional machine learning paradigms are based on the assumption that both training and
test data follow the same statistical pattern, which is mathematically referred to as …
test data follow the same statistical pattern, which is mathematically referred to as …
Federated learning for generalization, robustness, fairness: A survey and benchmark
Federated learning has emerged as a promising paradigm for privacy-preserving
collaboration among different parties. Recently, with the popularity of federated learning, an …
collaboration among different parties. Recently, with the popularity of federated learning, an …
Federated domain generalization with generalization adjustment
Abstract Federated Domain Generalization (FedDG) attempts to learn a global model in a
privacy-preserving manner that generalizes well to new clients possibly with domain shift …
privacy-preserving manner that generalizes well to new clients possibly with domain shift …
Domain generalization: A survey
Generalization to out-of-distribution (OOD) data is a capability natural to humans yet
challenging for machines to reproduce. This is because most learning algorithms strongly …
challenging for machines to reproduce. This is because most learning algorithms strongly …