Moiré photonics and optoelectronics
Moiré superlattices, the artificial quantum materials, have provided a wide range of
possibilities for the exploration of completely new physics and device architectures. In this …
possibilities for the exploration of completely new physics and device architectures. In this …
Emerging exciton physics in transition metal dichalcogenide heterobilayers
Atomically thin transition metal dichalcogenides (TMDs) are 2D semiconductors with tightly
bound excitons and correspondingly strong light–matter interactions. Owing to the weak van …
bound excitons and correspondingly strong light–matter interactions. Owing to the weak van …
Excitons in semiconductor moiré superlattices
Semiconductor moiré superlattices represent a rapidly develo** area of engineered
photonic materials and a new platform to explore correlated electron states and quantum …
photonic materials and a new platform to explore correlated electron states and quantum …
Excitons and emergent quantum phenomena in stacked 2D semiconductors
The design and control of material interfaces is a foundational approach to realize
technologically useful effects and engineer material properties. This is especially true for two …
technologically useful effects and engineer material properties. This is especially true for two …
Van der Waals heterostructure polaritons with moiré-induced nonlinearity
Controlling matter–light interactions with cavities is of fundamental importance in modern
science and technology 1. This is exemplified in the strong-coupling regime, where matter …
science and technology 1. This is exemplified in the strong-coupling regime, where matter …
Optical absorption of interlayer excitons in transition-metal dichalcogenide heterostructures
Interlayer excitons, electron-hole pairs bound across two monolayer van der Waals
semiconductors, offer promising electrical tunability and localizability. Because such …
semiconductors, offer promising electrical tunability and localizability. Because such …
Enhanced light–matter interaction in two-dimensional transition metal dichalcogenides
Abstract Two-dimensional (2D) transition metal dichalcogenide (TMDC) materials, such as
MoS 2, WS 2, MoSe 2, and WSe 2, have received extensive attention in the past decade due …
MoS 2, WS 2, MoSe 2, and WSe 2, have received extensive attention in the past decade due …
Nonlinear physics of moiré superlattices
Nonlinear physics is one of the most important research fields in modern physics and
materials science. It offers an unprecedented paradigm for exploring many fascinating …
materials science. It offers an unprecedented paradigm for exploring many fascinating …
Directing the research agenda on water and energy technologies with process and economic analysis
Climate change is directly impacting energy consumption, water availability, and agricultural
production. Among the global efforts to address the root causes of carbon emissions …
production. Among the global efforts to address the root causes of carbon emissions …
Twisted van der waals quantum materials: Fundamentals, tunability, and applications
Twisted van der Waals (vdW) quantum materials have emerged as a rapidly develo** field
of two-dimensional (2D) semiconductors. These materials establish a new central research …
of two-dimensional (2D) semiconductors. These materials establish a new central research …