Blockchain-based two-stage federated learning with non-IID data in IoMT system

Z Lian, Q Zeng, W Wang… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
The Internet of Medical Things (IoMT) has a bright future with the development of smart
mobile devices. Information technology is also leading changes in the healthcare industry …

A comprehensive survey on client selection strategies in federated learning

J Li, T Chen, S Teng - Computer Networks, 2024 - Elsevier
Federated learning (FL) has emerged as a promising paradigm for collaborative model
training while preserving data privacy. Client selection plays a crucial role in determining the …

Distance-aware hierarchical federated learning in blockchain-enabled edge computing network

X Huang, Y Wu, C Liang, Q Chen… - IEEE Internet of Things …, 2023 - ieeexplore.ieee.org
Federated learning (FL) has been proposed as an emerging paradigm to perform privacy-
preserving distributed machine learning in the Internet of Things (IoT). However, the …

Non-iid data in federated learning: A systematic review with taxonomy, metrics, methods, frameworks and future directions

D Solans, M Heikkila, A Vitaletti, N Kourtellis… - arxiv preprint arxiv …, 2024 - arxiv.org
Recent advances in machine learning have highlighted Federated Learning (FL) as a
promising approach that enables multiple distributed users (so-called clients) to collectively …

[HTML][HTML] Adaptive single-layer aggregation framework for energy-efficient and privacy-preserving load forecasting in heterogeneous Federated smart grids

HU Manzoor, A Jafri, A Zoha - Internet of Things, 2024 - Elsevier
Federated Learning (FL) enhances predictive accuracy in load forecasting by integrating
data from distributed load networks while ensuring data privacy. However, the …

Federated learning with non-iid data: A survey

Z Lu, H Pan, Y Dai, X Si, Y Zhang - IEEE Internet of Things …, 2024 - ieeexplore.ieee.org
Federated learning (FL) is an efficient decentralized machine learning methodology for
processing nonindependent and identically distributed (non-IID) data due to geographical …

Towards efficient asynchronous federated learning in heterogeneous edge environments

Y Zhou, X Pang, Z Wang, J Hu, P Sun… - IEEE INFOCOM 2024 …, 2024 - ieeexplore.ieee.org
Federated learning (FL) is widely used in edge environments as a privacy-preserving
collaborative learning paradigm. However, edge devices often have heterogeneous …

Privacy-preserving clustering federated learning for non-IID data

G Luo, N Chen, J He, B **, Z Zhang, Y Li - Future Generation Computer …, 2024 - Elsevier
With the increasing number of intelligent devices joining into the Internet of Things (IoT),
traditional centralized learning struggles to meet the performance requirements of terminal …

Heterogeneous privacy level-based client selection for hybrid federated and centralized learning in mobile edge computing

F Solat, S Patni, S Lim, J Lee - IEEE Access, 2024 - ieeexplore.ieee.org
To alleviate the substantial local training burden on clients in the federated learning (FL)
process, this paper proposes a more efficient approach based on hybrid federated and …

A survey of federated learning from data perspective in the healthcare domain: Challenges, methods, and future directions

ZK Taha, CT Yaw, SP Koh, SK Tiong… - IEEE …, 2023 - ieeexplore.ieee.org
Recent advances in deep learning (DL) have shown that data-driven insights can be used in
smart healthcare applications to improve the quality of life for patients. DL needs more data …