Quantum science with optical tweezer arrays of ultracold atoms and molecules
Single atoms and molecules can be trapped in tightly focused beams of light that form
'optical tweezers', affording exquisite capabilities for the control and detection of individual …
'optical tweezers', affording exquisite capabilities for the control and detection of individual …
Quantum simulators: Architectures and opportunities
Quantum simulators are a promising technology on the spectrum of quantum devices from
specialized quantum experiments to universal quantum computers. These quantum devices …
specialized quantum experiments to universal quantum computers. These quantum devices …
Resolving the gravitational redshift across a millimetre-scale atomic sample
Einstein's theory of general relativity states that clocks at different gravitational potentials tick
at different rates relative to lab coordinates—an effect known as the gravitational redshift. As …
at different rates relative to lab coordinates—an effect known as the gravitational redshift. As …
Realizing spin squeezing with Rydberg interactions in an optical clock
Neutral-atom arrays trapped in optical potentials are a powerful platform for studying
quantum physics, combining precise single-particle control and detection with a range of …
quantum physics, combining precise single-particle control and detection with a range of …
Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks
Optical atomic clocks require local oscillators with exceptional optical coherence owing to
the challenge of performing spectroscopy on their ultranarrow-linewidth clock transitions …
the challenge of performing spectroscopy on their ultranarrow-linewidth clock transitions …
Direct comparison of two spin-squeezed optical clock ensembles at the 10−17 level
Building scalable quantum systems that demonstrate performance enhancement based on
entanglement is a major goal in quantum computing and metrology. The main challenge …
entanglement is a major goal in quantum computing and metrology. The main challenge …
Half-minute-scale atomic coherence and high relative stability in a tweezer clock
The preparation of large, low-entropy, highly coherent ensembles of identical quantum
systems is fundamental for many studies in quantum metrology, simulation and information …
systems is fundamental for many studies in quantum metrology, simulation and information …
Long-lived Bell states in an array of optical clock qubits
The generation of long-lived entanglement in optical atomic clocks is one of the main goals
of quantum metrology. Arrays of neutral atoms, where Rydberg-based interactions may …
of quantum metrology. Arrays of neutral atoms, where Rydberg-based interactions may …