Colloquium: Quantum and classical discrete time crystals
The spontaneous breaking of time-translation symmetry has led to the discovery of a new
phase of matter: the discrete time crystal. Discrete time crystals exhibit rigid subharmonic …
phase of matter: the discrete time crystal. Discrete time crystals exhibit rigid subharmonic …
Quantum many-body scars: A quasiparticle perspective
Weakly interacting quasiparticles play a central role in the low-energy description of many
phases of quantum matter. At higher energies, however, quasiparticles cease to be well …
phases of quantum matter. At higher energies, however, quasiparticles cease to be well …
Photonics of time-varying media
Time-varying media have recently emerged as a new paradigm for wave manipulation, due
to the synergy between the discovery of highly nonlinear materials, such as epsilon-near …
to the synergy between the discovery of highly nonlinear materials, such as epsilon-near …
Time-crystalline eigenstate order on a quantum processor
Quantum many-body systems display rich phase structure in their low-temperature
equilibrium states. However, much of nature is not in thermal equilibrium. Remarkably, it was …
equilibrium states. However, much of nature is not in thermal equilibrium. Remarkably, it was …
Many-body localization in the age of classical computing
Statistical mechanics provides a framework for describing the physics of large, complex
many-body systems using only a few macroscopic parameters to determine the state of the …
many-body systems using only a few macroscopic parameters to determine the state of the …
Engineered dissipation for quantum information science
Quantum information processing relies on the precise control of non-classical states in the
presence of many uncontrolled environmental degrees of freedom. The interactions …
presence of many uncontrolled environmental degrees of freedom. The interactions …
Observation of a dissipative time crystal
We present the first experimental realization of a time crystal stabilized by dissipation. The
central signature in our implementation in a driven open atom-cavity system is a period …
central signature in our implementation in a driven open atom-cavity system is a period …
[책][B] The Jaynes–Cummings model and its descendants: modern research directions
J Larson, T Mavrogordatos - 2021 - iopscience.iop.org
The Jaynes–Cummings Model (JCM) has recently been receiving increased attention as
one of the simplest, yet intricately nonlinear, models of quantum physics. Emphasising the …
one of the simplest, yet intricately nonlinear, models of quantum physics. Emphasising the …
Tailoring quantum gases by Floquet engineering
Floquet engineering is the concept of tailoring a system by a periodic drive, and it is
increasingly employed in many areas of physics. Ultracold atoms in optical lattices offer a …
increasingly employed in many areas of physics. Ultracold atoms in optical lattices offer a …
Digital quantum simulation of Floquet symmetry-protected topological phases
Quantum many-body systems away from equilibrium host a rich variety of exotic phenomena
that are forbidden by equilibrium thermodynamics. A prominent example is that of discrete …
that are forbidden by equilibrium thermodynamics. A prominent example is that of discrete …