[HTML][HTML] Deep learning based synthesis of MRI, CT and PET: Review and analysis

S Dayarathna, KT Islam, S Uribe, G Yang, M Hayat… - Medical image …, 2024 - Elsevier
Medical image synthesis represents a critical area of research in clinical decision-making,
aiming to overcome the challenges associated with acquiring multiple image modalities for …

Diagnosis of brain diseases in fusion of neuroimaging modalities using deep learning: A review

A Shoeibi, M Khodatars, M Jafari, N Ghassemi… - Information …, 2023 - Elsevier
Brain diseases, including tumors and mental and neurological disorders, seriously threaten
the health and well-being of millions of people worldwide. Structural and functional …

Semi-supervised medical image segmentation via a tripled-uncertainty guided mean teacher model with contrastive learning

K Wang, B Zhan, C Zu, X Wu, J Zhou, L Zhou… - Medical Image …, 2022 - Elsevier
Due to the difficulty in accessing a large amount of labeled data, semi-supervised learning is
becoming an attractive solution in medical image segmentation. To make use of unlabeled …

Deep learning for Alzheimer's disease diagnosis: A survey

M Khojaste-Sarakhsi, SS Haghighi… - Artificial intelligence in …, 2022 - Elsevier
Alzheimer's Disease (AD) is an irreversible neurodegenerative disease that results in a
progressive decline in cognitive abilities. Since AD starts several years before the onset of …

A review on medical imaging synthesis using deep learning and its clinical applications

T Wang, Y Lei, Y Fu, JF Wynne… - Journal of applied …, 2021 - Wiley Online Library
This paper reviewed the deep learning‐based studies for medical imaging synthesis and its
clinical application. Specifically, we summarized the recent developments of deep learning …

Hi-net: hybrid-fusion network for multi-modal MR image synthesis

T Zhou, H Fu, G Chen, J Shen… - IEEE transactions on …, 2020 - ieeexplore.ieee.org
Magnetic resonance imaging (MRI) is a widely used neuroimaging technique that can
provide images of different contrasts (ie, modalities). Fusing this multi-modal data has …

Deep learning for PET image reconstruction

AJ Reader, G Corda, A Mehranian… - … on Radiation and …, 2020 - ieeexplore.ieee.org
This article reviews the use of a subdiscipline of artificial intelligence (AI), deep learning, for
the reconstruction of images in positron emission tomography (PET). Deep learning can be …

Unified medical image segmentation by learning from uncertainty in an end-to-end manner

P Tang, P Yang, D Nie, X Wu, J Zhou… - Knowledge-Based Systems, 2022 - Elsevier
Automatic segmentation is a fundamental task in computer-assisted medical image analysis.
Convolutional neural networks (CNNs) have been widely used for medical image …

D2-Net: Dual Disentanglement Network for Brain Tumor Segmentation With Missing Modalities

Q Yang, X Guo, Z Chen, PYM Woo… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Multi-modal Magnetic Resonance Imaging (MRI) can provide complementary information for
automatic brain tumor segmentation, which is crucial for diagnosis and prognosis. While …

Multi-constraint generative adversarial network for dose prediction in radiotherapy

B Zhan, J **ao, C Cao, X Peng, C Zu, J Zhou… - Medical Image …, 2022 - Elsevier
Radiation therapy (RT) is regarded as the primary treatment for cancer in the clinic, aiming to
deliver an accurate dose to the planning target volume (PTV) while protecting the …