Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
[HTML][HTML] Deep learning based synthesis of MRI, CT and PET: Review and analysis
Medical image synthesis represents a critical area of research in clinical decision-making,
aiming to overcome the challenges associated with acquiring multiple image modalities for …
aiming to overcome the challenges associated with acquiring multiple image modalities for …
Diagnosis of brain diseases in fusion of neuroimaging modalities using deep learning: A review
Brain diseases, including tumors and mental and neurological disorders, seriously threaten
the health and well-being of millions of people worldwide. Structural and functional …
the health and well-being of millions of people worldwide. Structural and functional …
Semi-supervised medical image segmentation via a tripled-uncertainty guided mean teacher model with contrastive learning
Due to the difficulty in accessing a large amount of labeled data, semi-supervised learning is
becoming an attractive solution in medical image segmentation. To make use of unlabeled …
becoming an attractive solution in medical image segmentation. To make use of unlabeled …
Deep learning for Alzheimer's disease diagnosis: A survey
Alzheimer's Disease (AD) is an irreversible neurodegenerative disease that results in a
progressive decline in cognitive abilities. Since AD starts several years before the onset of …
progressive decline in cognitive abilities. Since AD starts several years before the onset of …
A review on medical imaging synthesis using deep learning and its clinical applications
This paper reviewed the deep learning‐based studies for medical imaging synthesis and its
clinical application. Specifically, we summarized the recent developments of deep learning …
clinical application. Specifically, we summarized the recent developments of deep learning …
Hi-net: hybrid-fusion network for multi-modal MR image synthesis
Magnetic resonance imaging (MRI) is a widely used neuroimaging technique that can
provide images of different contrasts (ie, modalities). Fusing this multi-modal data has …
provide images of different contrasts (ie, modalities). Fusing this multi-modal data has …
Deep learning for PET image reconstruction
This article reviews the use of a subdiscipline of artificial intelligence (AI), deep learning, for
the reconstruction of images in positron emission tomography (PET). Deep learning can be …
the reconstruction of images in positron emission tomography (PET). Deep learning can be …
Unified medical image segmentation by learning from uncertainty in an end-to-end manner
Automatic segmentation is a fundamental task in computer-assisted medical image analysis.
Convolutional neural networks (CNNs) have been widely used for medical image …
Convolutional neural networks (CNNs) have been widely used for medical image …
D2-Net: Dual Disentanglement Network for Brain Tumor Segmentation With Missing Modalities
Multi-modal Magnetic Resonance Imaging (MRI) can provide complementary information for
automatic brain tumor segmentation, which is crucial for diagnosis and prognosis. While …
automatic brain tumor segmentation, which is crucial for diagnosis and prognosis. While …
Multi-constraint generative adversarial network for dose prediction in radiotherapy
B Zhan, J **ao, C Cao, X Peng, C Zu, J Zhou… - Medical Image …, 2022 - Elsevier
Radiation therapy (RT) is regarded as the primary treatment for cancer in the clinic, aiming to
deliver an accurate dose to the planning target volume (PTV) while protecting the …
deliver an accurate dose to the planning target volume (PTV) while protecting the …