Recent advances and clinical applications of deep learning in medical image analysis
Deep learning has received extensive research interest in develo** new medical image
processing algorithms, and deep learning based models have been remarkably successful …
processing algorithms, and deep learning based models have been remarkably successful …
Deep clustering: A comprehensive survey
Cluster analysis plays an indispensable role in machine learning and data mining. Learning
a good data representation is crucial for clustering algorithms. Recently, deep clustering …
a good data representation is crucial for clustering algorithms. Recently, deep clustering …
Grounding language models to images for multimodal inputs and outputs
We propose an efficient method to ground pretrained text-only language models to the
visual domain, enabling them to process arbitrarily interleaved image-and-text data, and …
visual domain, enabling them to process arbitrarily interleaved image-and-text data, and …
Text and code embeddings by contrastive pre-training
Text embeddings are useful features in many applications such as semantic search and
computing text similarity. Previous work typically trains models customized for different use …
computing text similarity. Previous work typically trains models customized for different use …
Regtr: End-to-end point cloud correspondences with transformers
Despite recent success in incorporating learning into point cloud registration, many works
focus on learning feature descriptors and continue to rely on nearest-neighbor feature …
focus on learning feature descriptors and continue to rely on nearest-neighbor feature …
Magface: A universal representation for face recognition and quality assessment
The performance of face recognition system degrades when the variability of the acquired
faces increases. Prior work alleviates this issue by either monitoring the face quality in pre …
faces increases. Prior work alleviates this issue by either monitoring the face quality in pre …
Fsce: Few-shot object detection via contrastive proposal encoding
Emerging interests have been brought to recognize previously unseen objects given very
few training examples, known as few-shot object detection (FSOD). Recent researches …
few training examples, known as few-shot object detection (FSOD). Recent researches …
Vicreg: Variance-invariance-covariance regularization for self-supervised learning
Recent self-supervised methods for image representation learning are based on maximizing
the agreement between embedding vectors from different views of the same image. A trivial …
the agreement between embedding vectors from different views of the same image. A trivial …
Self-supervised learning in remote sensing: A review
Y Wang, CM Albrecht, NAA Braham… - IEEE Geoscience and …, 2022 - ieeexplore.ieee.org
In deep learning research, self-supervised learning (SSL) has received great attention,
triggering interest within both the computer vision and remote sensing communities. While …
triggering interest within both the computer vision and remote sensing communities. While …
GAN review: Models and medical image fusion applications
T Zhou, Q Li, H Lu, Q Cheng, X Zhang - Information Fusion, 2023 - Elsevier
Abstract Generative Adversarial Network (GAN) is a research hotspot in deep generative
models, which has been widely used in the field of medical image fusion. This paper …
models, which has been widely used in the field of medical image fusion. This paper …