A survey of safety and trustworthiness of deep neural networks: Verification, testing, adversarial attack and defence, and interpretability

X Huang, D Kroening, W Ruan, J Sharp, Y Sun… - Computer Science …, 2020 - Elsevier
In the past few years, significant progress has been made on deep neural networks (DNNs)
in achieving human-level performance on several long-standing tasks. With the broader …

Adversarial examples on object recognition: A comprehensive survey

A Serban, E Poll, J Visser - ACM Computing Surveys (CSUR), 2020 - dl.acm.org
Deep neural networks are at the forefront of machine learning research. However, despite
achieving impressive performance on complex tasks, they can be very sensitive: Small …

[HTML][HTML] Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence

S Ali, T Abuhmed, S El-Sappagh, K Muhammad… - Information fusion, 2023 - Elsevier
Artificial intelligence (AI) is currently being utilized in a wide range of sophisticated
applications, but the outcomes of many AI models are challenging to comprehend and trust …

A survey of safety and trustworthiness of large language models through the lens of verification and validation

X Huang, W Ruan, W Huang, G **, Y Dong… - Artificial Intelligence …, 2024 - Springer
Large language models (LLMs) have exploded a new heatwave of AI for their ability to
engage end-users in human-level conversations with detailed and articulate answers across …

Concolic testing for deep neural networks

Y Sun, M Wu, W Ruan, X Huang… - Proceedings of the 33rd …, 2018 - dl.acm.org
Concolic testing combines program execution and symbolic analysis to explore the
execution paths of a software program. In this paper, we develop the first concolic testing …

Testing deep neural networks

Y Sun, X Huang, D Kroening, J Sharp, M Hill… - arxiv preprint arxiv …, 2018 - arxiv.org
Deep neural networks (DNNs) have a wide range of applications, and software employing
them must be thoroughly tested, especially in safety-critical domains. However, traditional …

Verification of deep convolutional neural networks using imagestars

HD Tran, S Bak, W **ang, TT Johnson - International conference on …, 2020 - Springer
Abstract Convolutional Neural Networks (CNN) have redefined state-of-the-art in many real-
world applications, such as facial recognition, image classification, human pose estimation …

Vulnerability of machine learning approaches applied in iot-based smart grid: A review

Z Zhang, M Liu, M Sun, R Deng… - IEEE Internet of …, 2024 - ieeexplore.ieee.org
Machine learning (ML) sees an increasing prevalence of being used in the Internet of Things
(IoT)-based smart grid. However, the trustworthiness of ML is a severe issue that must be …

Software verification and validation of safe autonomous cars: A systematic literature review

N Rajabli, F Flammini, R Nardone, V Vittorini - IEEE Access, 2020 - ieeexplore.ieee.org
Autonomous, or self-driving, cars are emerging as the solution to several problems primarily
caused by humans on roads, such as accidents and traffic congestion. However, those …

Robustness of 3d deep learning in an adversarial setting

M Wicker, M Kwiatkowska - … of the IEEE/CVF Conference on …, 2019 - openaccess.thecvf.com
Understanding the spatial arrangement and nature of real-world objects is of paramount
importance to many complex engineering tasks, including autonomous navigation. Deep …