Neural operators for accelerating scientific simulations and design

K Azizzadenesheli, N Kovachki, Z Li… - Nature Reviews …, 2024 - nature.com
Scientific discovery and engineering design are currently limited by the time and cost of
physical experiments. Numerical simulations are an alternative approach but are usually …

Machine learning-guided protein engineering

P Kouba, P Kohout, F Haddadi, A Bushuiev… - ACS …, 2023 - ACS Publications
Recent progress in engineering highly promising biocatalysts has increasingly involved
machine learning methods. These methods leverage existing experimental and simulation …

Machine learning-based fatigue life prediction of metal materials: Perspectives of physics-informed and data-driven hybrid methods

H Wang, B Li, J Gong, FZ Xuan - Engineering Fracture Mechanics, 2023 - Elsevier
Fatigue life prediction is critical for ensuring the safe service and the structural integrity of
mechanical structures. Although data-driven approaches have been proven effective in …

Machine learning-assisted low-dimensional electrocatalysts design for hydrogen evolution reaction

J Li, N Wu, J Zhang, HH Wu, K Pan, Y Wang, G Liu… - Nano-Micro Letters, 2023 - Springer
Efficient electrocatalysts are crucial for hydrogen generation from electrolyzing water.
Nevertheless, the conventional" trial and error" method for producing advanced …

[HTML][HTML] Feedback on a shared big dataset for intelligent TBM Part I: Feature extraction and machine learning methods

JB Li, ZY Chen, X Li, LJ **g, YP Zhang, HH **, 2023 - Elsevier
Due to complexity, the oil and gas industry employs various sensors to collect data for
analysis to maintain the safety and integrity of pipelines and associated infrastructure. There …