A comprehensive survey on community detection with deep learning

X Su, S Xue, F Liu, J Wu, J Yang, C Zhou… - … on Neural Networks …, 2022 - ieeexplore.ieee.org
Detecting a community in a network is a matter of discerning the distinct features and
connections of a group of members that are different from those in other communities. The …

A comprehensive survey on transfer learning

F Zhuang, Z Qi, K Duan, D **, Y Zhu… - Proceedings of the …, 2020 - ieeexplore.ieee.org
Transfer learning aims at improving the performance of target learners on target domains by
transferring the knowledge contained in different but related source domains. In this way, the …

Toward causal representation learning

B Schölkopf, F Locatello, S Bauer, NR Ke… - Proceedings of the …, 2021 - ieeexplore.ieee.org
The two fields of machine learning and graphical causality arose and are developed
separately. However, there is, now, cross-pollination and increasing interest in both fields to …

Interpretable machine learning–a brief history, state-of-the-art and challenges

C Molnar, G Casalicchio, B Bischl - Joint European conference on …, 2020 - Springer
We present a brief history of the field of interpretable machine learning (IML), give an
overview of state-of-the-art interpretation methods and discuss challenges. Research in IML …

Disentangled representation learning for multimodal emotion recognition

D Yang, S Huang, H Kuang, Y Du… - Proceedings of the 30th …, 2022 - dl.acm.org
Multimodal emotion recognition aims to identify human emotions from text, audio, and visual
modalities. Previous methods either explore correlations between different modalities or …

[HTML][HTML] The future of sensitivity analysis: an essential discipline for systems modeling and policy support

S Razavi, A Jakeman, A Saltelli, C Prieur… - … Modelling & Software, 2021 - Elsevier
Sensitivity analysis (SA) is en route to becoming an integral part of mathematical modeling.
The tremendous potential benefits of SA are, however, yet to be fully realized, both for …

Deep stable learning for out-of-distribution generalization

X Zhang, P Cui, R Xu, L Zhou… - Proceedings of the …, 2021 - openaccess.thecvf.com
Approaches based on deep neural networks have achieved striking performance when
testing data and training data share similar distribution, but can significantly fail otherwise …

Am-gcn: Adaptive multi-channel graph convolutional networks

X Wang, M Zhu, D Bo, P Cui, C Shi, J Pei - Proceedings of the 26th ACM …, 2020 - dl.acm.org
Graph Convolutional Networks (GCNs) have gained great popularity in tackling various
analytics tasks on graph and network data. However, some recent studies raise concerns …

Similarity of neural network representations revisited

S Kornblith, M Norouzi, H Lee… - … conference on machine …, 2019 - proceedings.mlr.press
Recent work has sought to understand the behavior of neural networks by comparing
representations between layers and between different trained models. We examine methods …

Generative adversarial networks (GANs) challenges, solutions, and future directions

D Saxena, J Cao - ACM Computing Surveys (CSUR), 2021 - dl.acm.org
Generative Adversarial Networks (GANs) is a novel class of deep generative models that
has recently gained significant attention. GANs learn complex and high-dimensional …