A comprehensive survey on community detection with deep learning
Detecting a community in a network is a matter of discerning the distinct features and
connections of a group of members that are different from those in other communities. The …
connections of a group of members that are different from those in other communities. The …
A comprehensive survey on transfer learning
Transfer learning aims at improving the performance of target learners on target domains by
transferring the knowledge contained in different but related source domains. In this way, the …
transferring the knowledge contained in different but related source domains. In this way, the …
Toward causal representation learning
The two fields of machine learning and graphical causality arose and are developed
separately. However, there is, now, cross-pollination and increasing interest in both fields to …
separately. However, there is, now, cross-pollination and increasing interest in both fields to …
Interpretable machine learning–a brief history, state-of-the-art and challenges
We present a brief history of the field of interpretable machine learning (IML), give an
overview of state-of-the-art interpretation methods and discuss challenges. Research in IML …
overview of state-of-the-art interpretation methods and discuss challenges. Research in IML …
Disentangled representation learning for multimodal emotion recognition
Multimodal emotion recognition aims to identify human emotions from text, audio, and visual
modalities. Previous methods either explore correlations between different modalities or …
modalities. Previous methods either explore correlations between different modalities or …
[HTML][HTML] The future of sensitivity analysis: an essential discipline for systems modeling and policy support
Sensitivity analysis (SA) is en route to becoming an integral part of mathematical modeling.
The tremendous potential benefits of SA are, however, yet to be fully realized, both for …
The tremendous potential benefits of SA are, however, yet to be fully realized, both for …
Deep stable learning for out-of-distribution generalization
Approaches based on deep neural networks have achieved striking performance when
testing data and training data share similar distribution, but can significantly fail otherwise …
testing data and training data share similar distribution, but can significantly fail otherwise …
Am-gcn: Adaptive multi-channel graph convolutional networks
Graph Convolutional Networks (GCNs) have gained great popularity in tackling various
analytics tasks on graph and network data. However, some recent studies raise concerns …
analytics tasks on graph and network data. However, some recent studies raise concerns …
Similarity of neural network representations revisited
Recent work has sought to understand the behavior of neural networks by comparing
representations between layers and between different trained models. We examine methods …
representations between layers and between different trained models. We examine methods …
Generative adversarial networks (GANs) challenges, solutions, and future directions
Generative Adversarial Networks (GANs) is a novel class of deep generative models that
has recently gained significant attention. GANs learn complex and high-dimensional …
has recently gained significant attention. GANs learn complex and high-dimensional …