Biological underpinnings for lifelong learning machines
Biological organisms learn from interactions with their environment throughout their lifetime.
For artificial systems to successfully act and adapt in the real world, it is desirable to similarly …
For artificial systems to successfully act and adapt in the real world, it is desirable to similarly …
[HTML][HTML] Survey of explainable artificial intelligence techniques for biomedical imaging with deep neural networks
Artificial Intelligence (AI) techniques of deep learning have revolutionized the disease
diagnosis with their outstanding image classification performance. In spite of the outstanding …
diagnosis with their outstanding image classification performance. In spite of the outstanding …
Graph neural networks: foundation, frontiers and applications
The field of graph neural networks (GNNs) has seen rapid and incredible strides over the
recent years. Graph neural networks, also known as deep learning on graphs, graph …
recent years. Graph neural networks, also known as deep learning on graphs, graph …
Layercam: Exploring hierarchical class activation maps for localization
The class activation maps are generated from the final convolutional layer of CNN. They can
highlight discriminative object regions for the class of interest. These discovered object …
highlight discriminative object regions for the class of interest. These discovered object …
Transformer interpretability beyond attention visualization
Self-attention techniques, and specifically Transformers, are dominating the field of text
processing and are becoming increasingly popular in computer vision classification tasks. In …
processing and are becoming increasingly popular in computer vision classification tasks. In …
[HTML][HTML] A novel approach to explain the black-box nature of machine learning in compressive strength predictions of concrete using Shapley additive explanations …
Abstract Machine learning (ML) techniques are often employed for the accurate prediction of
the compressive strength of concrete. Despite higher accuracy, previous ML models failed to …
the compressive strength of concrete. Despite higher accuracy, previous ML models failed to …
Knowledge-enhanced visual-language pre-training on chest radiology images
While multi-modal foundation models pre-trained on large-scale data have been successful
in natural language understanding and vision recognition, their use in medical domains is …
in natural language understanding and vision recognition, their use in medical domains is …
Drug discovery with explainable artificial intelligence
Deep learning bears promise for drug discovery, including advanced image analysis,
prediction of molecular structure and function, and automated generation of innovative …
prediction of molecular structure and function, and automated generation of innovative …
Quantus: An explainable ai toolkit for responsible evaluation of neural network explanations and beyond
The evaluation of explanation methods is a research topic that has not yet been explored
deeply, however, since explainability is supposed to strengthen trust in artificial intelligence …
deeply, however, since explainability is supposed to strengthen trust in artificial intelligence …
Explaining deep neural networks and beyond: A review of methods and applications
With the broader and highly successful usage of machine learning (ML) in industry and the
sciences, there has been a growing demand for explainable artificial intelligence (XAI) …
sciences, there has been a growing demand for explainable artificial intelligence (XAI) …