Holistic network virtualization and pervasive network intelligence for 6G

X Shen, J Gao, W Wu, M Li, C Zhou… - … Surveys & Tutorials, 2021 - ieeexplore.ieee.org
In this tutorial paper, we look into the evolution and prospect of network architecture and
propose a novel conceptual architecture for the 6th generation (6G) networks. The proposed …

A comprehensive overview on 5G-and-beyond networks with UAVs: From communications to sensing and intelligence

Q Wu, J Xu, Y Zeng, DWK Ng… - IEEE Journal on …, 2021 - ieeexplore.ieee.org
Due to the advancements in cellular technologies and the dense deployment of cellular
infrastructure, integrating unmanned aerial vehicles (UAVs) into the fifth-generation (5G) and …

6G for vehicle-to-everything (V2X) communications: Enabling technologies, challenges, and opportunities

M Noor-A-Rahim, Z Liu, H Lee, MO Khyam… - Proceedings of the …, 2022 - ieeexplore.ieee.org
We are on the cusp of a new era of connected autonomous vehicles with unprecedented
user experiences, tremendously improved road safety and air quality, highly diverse …

Optimizing federated learning in distributed industrial IoT: A multi-agent approach

W Zhang, D Yang, W Wu, H Peng… - IEEE Journal on …, 2021 - ieeexplore.ieee.org
In this paper, we aim to make the best joint decision of device selection and computing and
spectrum resource allocation for optimizing federated learning (FL) performance in …

Energy efficient federated learning over wireless communication networks

Z Yang, M Chen, W Saad, CS Hong… - IEEE Transactions …, 2020 - ieeexplore.ieee.org
In this paper, the problem of energy efficient transmission and computation resource
allocation for federated learning (FL) over wireless communication networks is investigated …

Split learning over wireless networks: Parallel design and resource management

W Wu, M Li, K Qu, C Zhou, X Shen… - IEEE Journal on …, 2023 - ieeexplore.ieee.org
Split learning (SL) is a collaborative learning framework, which can train an artificial
intelligence (AI) model between a device and an edge server by splitting the AI model into a …

ColO-RAN: Develo** machine learning-based xApps for open RAN closed-loop control on programmable experimental platforms

M Polese, L Bonati, S D'Oro, S Basagni… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Cellular networks are undergoing a radical transformation toward disaggregated, fully
virtualized, and programmable architectures with increasingly heterogeneous devices and …

Hierarchical federated learning across heterogeneous cellular networks

MSH Abad, E Ozfatura, D Gunduz… - ICASSP 2020-2020 …, 2020 - ieeexplore.ieee.org
We consider federated edge learning (FEEL), where mobile users (MUs) collaboratively
learn a global model by sharing local updates on the model parameters rather than their …

A comprehensive survey on 5G-and-beyond networks with UAVs: Applications, emerging technologies, regulatory aspects, research trends and challenges

MK Banafaa, Ö Pepeoğlu, I Shayea… - IEEE …, 2024 - ieeexplore.ieee.org
The rapid advancement of fifth-generation (5G)-and-beyond networks coupled with
unmanned aerial vehicles (UAVs) has opened up exciting possibilities for diverse …

Machine learning for large-scale optimization in 6g wireless networks

Y Shi, L Lian, Y Shi, Z Wang, Y Zhou… - … Surveys & Tutorials, 2023 - ieeexplore.ieee.org
The sixth generation (6G) wireless systems are envisioned to enable the paradigm shift from
“connected things” to “connected intelligence”, featured by ultra high density, large-scale …