[HTML][HTML] Recent advances of additive manufacturing in implant fabrication–A review

MH Mobarak, MA Islam, N Hossain… - Applied Surface Science …, 2023 - Elsevier
The use of additive manufacturing, or 3D printing, has progressed beyond prototy** to
produce intricate and valuable finished goods. The potential of additive manufacturing has …

[HTML][HTML] Properties and applications of additively manufactured metallic cellular materials: a review

A Du Plessis, N Razavi, M Benedetti, S Murchio… - Progress in Materials …, 2022 - Elsevier
Additive manufacturing (AM) refers to a collection of manufacturing methods involving the
incremental addition of material to build a part directly in its final or near-final geometry …

Development of scaffolds from bio-based natural materials for tissue regeneration applications: a review

M Krishani, WY Shin, H Suhaimi, NS Sambudi - Gels, 2023 - mdpi.com
Tissue damage and organ failure are major problems that many people face worldwide.
Most of them benefit from treatment related to modern technology's tissue regeneration …

Scaffold fabrication technologies and structure/function properties in bone tissue engineering

MN Collins, G Ren, K Young, S Pina… - Advanced functional …, 2021 - Wiley Online Library
Bone tissue engineering (BTE) is a rapidly growing field aiming to create a biofunctional
tissue that can integrate and degrade in vivo to treat diseased or damaged tissue. It has …

[HTML][HTML] An overview of substrate stiffness guided cellular response and its applications in tissue regeneration

B Yi, Q Xu, W Liu - Bioactive materials, 2022 - Elsevier
Cell-matrix interactions play a critical role in tissue repair and regeneration. With gradual
uncovering of substrate mechanical characteristics that can affect cell-matrix interactions …

[HTML][HTML] Research progress on the design and performance of porous titanium alloy bone implants

C Song, L Liu, Z Deng, H Lei, F Yuan, Y Yang… - Journal of Materials …, 2023 - Elsevier
The porous structure design of implants can not only obtain a more lightweight implant but
also provide more space for its cell growth. The technology development of additive …

[HTML][HTML] 3D printing of Aluminium alloys: Additive Manufacturing of Aluminium alloys using selective laser melting

NT Aboulkhair, M Simonelli, L Parry, I Ashcroft… - Progress in materials …, 2019 - Elsevier
Abstract Metal Additive Manufacturing (AM) processes, such as selective laser melting
(SLM), enable the fabrication of arbitrary 3D-structures with unprecedented degrees of …

Methods and materials for additive manufacturing: A critical review on advancements and challenges

MB Kumar, P Sathiya - Thin-Walled Structures, 2021 - Elsevier
Additive Manufacturing (AM) is the significantly progressing field in terms of methods,
materials, and performance of fabricated parts. Periodical evaluation on the understanding …

An overview of 3D printed metal implants in orthopedic applications: Present and future perspectives

Y Wu, J Liu, L Kang, J Tian, X Zhang, J Hu, Y Huang… - Heliyon, 2023 - cell.com
With the ability to produce components with complex and precise structures, additive
manufacturing or 3D printing techniques are now widely applied in both industry and …

Personalized 3D printed bone scaffolds: A review

M Mirkhalaf, Y Men, R Wang, Y No, H Zreiqat - Acta Biomaterialia, 2023 - Elsevier
Abstract 3D printed bone scaffolds have the potential to replace autografts and allografts
because of advantages such as unlimited supply and the ability to tailor the scaffolds' …