Sensor and sensor fusion technology in autonomous vehicles: A review
With the significant advancement of sensor and communication technology and the reliable
application of obstacle detection techniques and algorithms, automated driving is becoming …
application of obstacle detection techniques and algorithms, automated driving is becoming …
3D object detection for autonomous driving: A comprehensive survey
Autonomous driving, in recent years, has been receiving increasing attention for its potential
to relieve drivers' burdens and improve the safety of driving. In modern autonomous driving …
to relieve drivers' burdens and improve the safety of driving. In modern autonomous driving …
Bevfusion: Multi-task multi-sensor fusion with unified bird's-eye view representation
Multi-sensor fusion is essential for an accurate and reliable autonomous driving system.
Recent approaches are based on point-level fusion: augmenting the LiDAR point cloud with …
Recent approaches are based on point-level fusion: augmenting the LiDAR point cloud with …
Transfusion: Robust lidar-camera fusion for 3d object detection with transformers
LiDAR and camera are two important sensors for 3D object detection in autonomous driving.
Despite the increasing popularity of sensor fusion in this field, the robustness against inferior …
Despite the increasing popularity of sensor fusion in this field, the robustness against inferior …
Bevfusion: A simple and robust lidar-camera fusion framework
Fusing the camera and LiDAR information has become a de-facto standard for 3D object
detection tasks. Current methods rely on point clouds from the LiDAR sensor as queries to …
detection tasks. Current methods rely on point clouds from the LiDAR sensor as queries to …
Deepfusion: Lidar-camera deep fusion for multi-modal 3d object detection
Lidars and cameras are critical sensors that provide complementary information for 3D
detection in autonomous driving. While prevalent multi-modal methods simply decorate raw …
detection in autonomous driving. While prevalent multi-modal methods simply decorate raw …
Not all points are equal: Learning highly efficient point-based detectors for 3d lidar point clouds
Y Zhang, Q Hu, G Xu, Y Ma, J Wan… - Proceedings of the …, 2022 - openaccess.thecvf.com
We study the problem of efficient object detection of 3D LiDAR point clouds. To reduce the
memory and computational cost, existing point-based pipelines usually adopt task-agnostic …
memory and computational cost, existing point-based pipelines usually adopt task-agnostic …
Transfuser: Imitation with transformer-based sensor fusion for autonomous driving
How should we integrate representations from complementary sensors for autonomous
driving? Geometry-based fusion has shown promise for perception (eg, object detection …
driving? Geometry-based fusion has shown promise for perception (eg, object detection …
Voxel transformer for 3d object detection
Abstract We present Voxel Transformer (VoTr), a novel and effective voxel-based
Transformer backbone for 3D object detection from point clouds. Conventional 3D …
Transformer backbone for 3D object detection from point clouds. Conventional 3D …
Futr3d: A unified sensor fusion framework for 3d detection
Sensor fusion is an essential topic in many perception systems, such as autonomous driving
and robotics. Existing multi-modal 3D detection models usually involve customized designs …
and robotics. Existing multi-modal 3D detection models usually involve customized designs …