Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Knowledge distillation on graphs: A survey
Graph Neural Networks (GNNs) have received significant attention for demonstrating their
capability to handle graph data. However, they are difficult to be deployed in resource …
capability to handle graph data. However, they are difficult to be deployed in resource …
LightGCL: Simple yet effective graph contrastive learning for recommendation
Graph neural network (GNN) is a powerful learning approach for graph-based recommender
systems. Recently, GNNs integrated with contrastive learning have shown superior …
systems. Recently, GNNs integrated with contrastive learning have shown superior …
Language is all a graph needs
The emergence of large-scale pre-trained language models has revolutionized various AI
research domains. Transformers-based Large Language Models (LLMs) have gradually …
research domains. Transformers-based Large Language Models (LLMs) have gradually …
An overview of advanced deep graph node clustering
Graph data have become increasingly important, and graph node clustering has emerged
as a fundamental task in data analysis. In recent years, graph node clustering has gradually …
as a fundamental task in data analysis. In recent years, graph node clustering has gradually …
Cluster-guided contrastive graph clustering network
Benefiting from the intrinsic supervision information exploitation capability, contrastive
learning has achieved promising performance in the field of deep graph clustering recently …
learning has achieved promising performance in the field of deep graph clustering recently …
Heterogeneous graph masked autoencoders
Generative self-supervised learning (SSL), especially masked autoencoders, has become
one of the most exciting learning paradigms and has shown great potential in handling …
one of the most exciting learning paradigms and has shown great potential in handling …
A survey of deep graph clustering: Taxonomy, challenge, application, and open resource
Graph clustering, which aims to divide nodes in the graph into several distinct clusters, is a
fundamental yet challenging task. Benefiting from the powerful representation capability of …
fundamental yet challenging task. Benefiting from the powerful representation capability of …
Convert: Contrastive graph clustering with reliable augmentation
Contrastive graph node clustering via learnable data augmentation is a hot research spot in
the field of unsupervised graph learning. The existing methods learn the sampling …
the field of unsupervised graph learning. The existing methods learn the sampling …
Self-supervised continual graph learning in adaptive riemannian spaces
Continual graph learning routinely finds its role in a variety of real-world applications where
the graph data with different tasks come sequentially. Despite the success of prior works, it …
the graph data with different tasks come sequentially. Despite the success of prior works, it …
Self-supervised graph structure refinement for graph neural networks
Graph structure learning (GSL), which aims to learn the adjacency matrix for graph neural
networks (GNNs), has shown great potential in boosting the performance of GNNs. Most …
networks (GNNs), has shown great potential in boosting the performance of GNNs. Most …