A comprehensive survey on test-time adaptation under distribution shifts

J Liang, R He, T Tan - International Journal of Computer Vision, 2025 - Springer
Abstract Machine learning methods strive to acquire a robust model during the training
process that can effectively generalize to test samples, even in the presence of distribution …

External validation of deep learning algorithms for radiologic diagnosis: a systematic review

AC Yu, B Mohajer, J Eng - Radiology: Artificial Intelligence, 2022 - pubs.rsna.org
Purpose To assess generalizability of published deep learning (DL) algorithms for radiologic
diagnosis. Materials and Methods In this systematic review, the PubMed database was …

Trustllm: Trustworthiness in large language models

Y Huang, L Sun, H Wang, S Wu, Q Zhang, Y Li… - arxiv preprint arxiv …, 2024 - arxiv.org
Large language models (LLMs), exemplified by ChatGPT, have gained considerable
attention for their excellent natural language processing capabilities. Nonetheless, these …

Three types of incremental learning

GM Van de Ven, T Tuytelaars, AS Tolias - Nature Machine Intelligence, 2022 - nature.com
Incrementally learning new information from a non-stationary stream of data, referred to as
'continual learning', is a key feature of natural intelligence, but a challenging problem for …

[HTML][HTML] Position: TrustLLM: Trustworthiness in large language models

Y Huang, L Sun, H Wang, S Wu… - International …, 2024 - proceedings.mlr.press
Large language models (LLMs) have gained considerable attention for their excellent
natural language processing capabilities. Nonetheless, these LLMs present many …

Learn from others and be yourself in heterogeneous federated learning

W Huang, M Ye, B Du - … of the IEEE/CVF Conference on …, 2022 - openaccess.thecvf.com
Federated learning has emerged as an important distributed learning paradigm, which
normally involves collaborative updating with others and local updating on private data …

Domain generalization: A survey

K Zhou, Z Liu, Y Qiao, T **ang… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Generalization to out-of-distribution (OOD) data is a capability natural to humans yet
challenging for machines to reproduce. This is because most learning algorithms strongly …

Domain adaptation for medical image analysis: a survey

H Guan, M Liu - IEEE Transactions on Biomedical Engineering, 2021 - ieeexplore.ieee.org
Machine learning techniques used in computer-aided medical image analysis usually suffer
from the domain shift problem caused by different distributions between source/reference …

[HTML][HTML] From concept drift to model degradation: An overview on performance-aware drift detectors

F Bayram, BS Ahmed, A Kassler - Knowledge-Based Systems, 2022 - Elsevier
The dynamicity of real-world systems poses a significant challenge to deployed predictive
machine learning (ML) models. Changes in the system on which the ML model has been …

Learning to generate novel domains for domain generalization

K Zhou, Y Yang, T Hospedales, T **ang - Computer Vision–ECCV 2020 …, 2020 - Springer
This paper focuses on domain generalization (DG), the task of learning from multiple source
domains a model that generalizes well to unseen domains. A main challenge for DG is that …