An asymptotic preserving scheme for the model on polygonal and conical meshes

X Blanc, P Hoch, C Lasuen - Calcolo, 2024 - Springer
This work focuses on the design of a 2 D numerical scheme for the M 1 model on polygonal
and conical meshes. This model is nonlinear and approximates the firsts moments of the …

Composite finite volume schemes for the diffusion equation on unstructured meshes

X Blanc, P Hoch, C Lasuen - Computers & Mathematics with Applications, 2024 - Elsevier
We present a finite volume scheme for the anisotropic diffusion equation. The scheme is
based on a reformulation of the diffusion equation as an advection equation. We prove that it …

[PDF][PDF] Contribution to the mathematical and numerical analysis of uncertain systems of conservation laws and of the linear and nonlinear Boltzmann equation

G Poëtte - 2019 - hal.science
1.1 The (quadratic) Boltzmann equation and two of its limits.......... 4 1.1. 1 One
Hydrodynamic limit of Boltzmann equation................. 6 1.1. 2 The Linear Boltzmann equation …

Finite volume scheme with local high order discretization of the hydrostatic equilibrium for the Euler equations with external forces

E Franck, LS Mendoza - Journal of Scientific Computing, 2016 - Springer
A new finite volume scheme for the Euler equations with gravity and friction source terms is
presented. Classical finite volume schemes are not able to capture correctly the dynamics …

An asymptotic preserving scheme with the maximum principle for the model on distorded meshes

C Buet, B Després, E Franck - Comptes Rendus. Mathématique, 2012 - numdam.org
634 C. Buet et al./CR Acad. Sci. Paris, Ser. I 350 (2012) 633–638 nous présentons est
basée sur une reformulation du modèle M1 sous la forme d'un système proche des …

Asymptotic preserving schemes on distorted meshes for Friedrichs systems with stiff relaxation: application to angular models in linear transport

C Buet, B Després, E Franck - Journal of Scientific Computing, 2015 - Springer
In this paper we propose an asymptotic preserving scheme for a family of Friedrichs systems
on unstructured meshes based on a decomposition between the hyperbolic heat equation …

Proof of uniform convergence for a cell-centered AP discretization of the hyperbolic heat equation on general meshes

C Buet, B Després, E Franck, T Leroy - Mathematics of Computation, 2017 - ams.org
We prove the uniform AP convergence on unstructured meshes in 2D of a generalization of
the Gosse-Toscani 1D scheme for the hyperbolic heat equation. This scheme is also a nodal …

A positivity-preserving method for matrix-valued solution of the diffusion equation on deformed meshes

C Lasuen - 2024 - hal.science
This work proposes a method to solve the diffusion equation with a matrix-valued unknown.
A maximum principle can be proved for this equation and the solution is expected to be …

Construction et analyse numérique de schema asymptotic preserving sur maillages non structurés. Application au transport linéaire et aux systèmes de Friedrichs

E Franck - 2012 - theses.hal.science
L'équation de transport, dans le régime fortement collisionnel admet une limite asymptotique
de diffusion. Les discrétisations angulaires comme la méthode des ordonnées discrètes Sn …

An asymptotic preserving scheme for the M1 model on conical meshes

X Blanc, P Hoch, C Lasuen - 2021 - hal.science
This work focuses on the design of a 2D numerical scheme for the M1 model on conical
meshes. This model is nonlinear and approximates the firsts moments of the radiative …