[PDF][PDF] Deep unsupervised domain adaptation: A review of recent advances and perspectives

X Liu, C Yoo, F **ng, H Oh, G El Fakhri… - … on Signal and …, 2022 - nowpublishers.com
Deep learning has become the method of choice to tackle real-world problems in different
domains, partly because of its ability to learn from data and achieve impressive performance …

[HTML][HTML] A review of uncertainty quantification in deep learning: Techniques, applications and challenges

M Abdar, F Pourpanah, S Hussain, D Rezazadegan… - Information fusion, 2021 - Elsevier
Uncertainty quantification (UQ) methods play a pivotal role in reducing the impact of
uncertainties during both optimization and decision making processes. They have been …

Semi-supervised semantic segmentation using unreliable pseudo-labels

Y Wang, H Wang, Y Shen, J Fei, W Li… - Proceedings of the …, 2022 - openaccess.thecvf.com
The crux of semi-supervised semantic segmentation is to assign pseudo-labels to the pixels
of unlabeled images. A common practice is to select the highly confident predictions as the …

Neural video compression with diverse contexts

J Li, B Li, Y Lu - Proceedings of the IEEE/CVF Conference …, 2023 - openaccess.thecvf.com
For any video codecs, the coding efficiency highly relies on whether the current signal to be
encoded can find the relevant contexts from the previous reconstructed signals. Traditional …

[HTML][HTML] Computational approaches to explainable artificial intelligence: advances in theory, applications and trends

JM Górriz, I Álvarez-Illán, A Álvarez-Marquina, JE Arco… - Information …, 2023 - Elsevier
Deep Learning (DL), a groundbreaking branch of Machine Learning (ML), has emerged as a
driving force in both theoretical and applied Artificial Intelligence (AI). DL algorithms, rooted …

[HTML][HTML] Pre-trained models: Past, present and future

X Han, Z Zhang, N Ding, Y Gu, X Liu, Y Huo, J Qiu… - AI Open, 2021 - Elsevier
Large-scale pre-trained models (PTMs) such as BERT and GPT have recently achieved
great success and become a milestone in the field of artificial intelligence (AI). Owing to …

Deep deterministic uncertainty: A new simple baseline

J Mukhoti, A Kirsch, J van Amersfoort… - Proceedings of the …, 2023 - openaccess.thecvf.com
Reliable uncertainty from deterministic single-forward pass models is sought after because
conventional methods of uncertainty quantification are computationally expensive. We take …

Hands-on Bayesian neural networks—A tutorial for deep learning users

LV Jospin, H Laga, F Boussaid… - IEEE Computational …, 2022 - ieeexplore.ieee.org
Modern deep learning methods constitute incredibly powerful tools to tackle a myriad of
challenging problems. However, since deep learning methods operate as black boxes, the …

[HTML][HTML] Application of uncertainty quantification to artificial intelligence in healthcare: A review of last decade (2013–2023)

S Seoni, V Jahmunah, M Salvi, PD Barua… - Computers in Biology …, 2023 - Elsevier
Uncertainty estimation in healthcare involves quantifying and understanding the inherent
uncertainty or variability associated with medical predictions, diagnoses, and treatment …

Potential sources of sensor data anomalies for autonomous vehicles: An overview from road vehicle safety perspective

X Zhao, Y Fang, H Min, X Wu, W Wang… - Expert Systems with …, 2024 - Elsevier
Outstanding steps towards intelligent transportation systems with autonomous vehicles have
been taken in the past few years. Nevertheless, the safety issue in autonomous vehicles is …