Neuroscience needs network science
The brain is a complex system comprising a myriad of interacting neurons, posing significant
challenges in understanding its structure, function, and dynamics. Network science has …
challenges in understanding its structure, function, and dynamics. Network science has …
Percolation theories for quantum networks
Quantum networks have experienced rapid advancements in both theoretical and
experimental domains over the last decade, making it increasingly important to understand …
experimental domains over the last decade, making it increasingly important to understand …
Turing patterns on discrete topologies: from networks to higher-order structures
Nature is a blossoming of regular structures, signature of self-organization of the underlying
microscopic interacting agents. Turing theory of pattern formation is one of the most studied …
microscopic interacting agents. Turing theory of pattern formation is one of the most studied …
Information propagation in multilayer systems with higher-order interactions across timescales
Complex systems are characterized by multiple spatial and temporal scales. A natural
framework to capture their multiscale nature is that of multilayer networks, where different …
framework to capture their multiscale nature is that of multilayer networks, where different …
[HTML][HTML] Topology and dynamics of higher-order multiplex networks
Higher-order networks are gaining significant scientific attention due to their ability to
encode the many-body interactions present in complex systems. However, higher-order …
encode the many-body interactions present in complex systems. However, higher-order …
Theory of percolation on hypergraphs
Hypergraphs capture the higher-order interactions in complex systems and always admit a
factor graph representation, consisting of a bipartite network of nodes and hyperedges. As …
factor graph representation, consisting of a bipartite network of nodes and hyperedges. As …
Nature of hypergraph -core percolation problems
Hypergraphs are higher-order networks that capture the interactions between two or more
nodes. Hypergraphs can always be represented by factor graphs, ie, bipartite networks …
nodes. Hypergraphs can always be represented by factor graphs, ie, bipartite networks …
A unified framework for Simplicial Kuramoto models
Simplicial Kuramoto models have emerged as a diverse and intriguing class of models
describing oscillators on simplices rather than nodes. In this paper, we present a unified …
describing oscillators on simplices rather than nodes. In this paper, we present a unified …
[HTML][HTML] Dynamics of cascades in spatial interdependent networks
The dynamics of cascading failures in spatial interdependent networks significantly depends
on the interaction range of dependency couplings between layers. In particular, for an …
on the interaction range of dependency couplings between layers. In particular, for an …
Synchronization in temporal simplicial complexes
The stability analysis of synchronization in time-varying higher-order networked structures
(simplicial complexes) is a challenging problem due to the presence of time-varying group …
(simplicial complexes) is a challenging problem due to the presence of time-varying group …