Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
A systematic review of machine learning methods applied to fuel cells in performance evaluation, durability prediction, and application monitoring
W Ming, P Sun, Z Zhang, W Qiu, J Du, X Li… - International Journal of …, 2023 - Elsevier
A fuel cell is a power generation device that directly converts chemical energy into electrical
energy through chemical reactions; fuel cells are widely used in aerospace, electric vehicle …
energy through chemical reactions; fuel cells are widely used in aerospace, electric vehicle …
Review on data-driven modeling and monitoring for plant-wide industrial processes
Z Ge - Chemometrics and Intelligent Laboratory Systems, 2017 - Elsevier
Data-driven modeling and applications in plant-wide processes have recently caught much
attention in both academy and industry. This paper provides a systematic review on data …
attention in both academy and industry. This paper provides a systematic review on data …
Data mining and analytics in the process industry: The role of machine learning
Data mining and analytics have played an important role in knowledge discovery and
decision making/supports in the process industry over the past several decades. As a …
decision making/supports in the process industry over the past several decades. As a …
[HTML][HTML] Data analytics and machine learning for smart process manufacturing: Recent advances and perspectives in the big data era
Safe, efficient, and sustainable operations and control are primary objectives in industrial
manufacturing processes. State-of-the-art technologies heavily rely on human intervention …
manufacturing processes. State-of-the-art technologies heavily rely on human intervention …
Sequential fault diagnosis based on LSTM neural network
Fault diagnosis of chemical process data becomes one of the most important directions in
research and practice. Conventional fault diagnosis and classification methods first extract …
research and practice. Conventional fault diagnosis and classification methods first extract …
[HTML][HTML] Industrial process monitoring in the big data/industry 4.0 era: From detection, to diagnosis, to prognosis
MS Reis, G Gins - Processes, 2017 - mdpi.com
We provide a critical outlook of the evolution of Industrial Process Monitoring (IPM) since its
introduction almost 100 years ago. Several evolution trends that have been structuring IPM …
introduction almost 100 years ago. Several evolution trends that have been structuring IPM …
A deep belief network based fault diagnosis model for complex chemical processes
Z Zhang, J Zhao - Computers & chemical engineering, 2017 - Elsevier
Data-driven methods have been regarded as desirable methods for fault detection and
diagnosis (FDD) of practical chemical processes. However, with the big data era coming …
diagnosis (FDD) of practical chemical processes. However, with the big data era coming …
A review of data-driven fault detection and diagnosis methods: Applications in chemical process systems
N Md Nor, CR Che Hassan… - Reviews in Chemical …, 2020 - degruyter.com
Fault detection and diagnosis (FDD) systems are developed to characterize normal
variations and detect abnormal changes in a process plant. It is always important for early …
variations and detect abnormal changes in a process plant. It is always important for early …
[HTML][HTML] Maximizing information from chemical engineering data sets: Applications to machine learning
It is well-documented how artificial intelligence can have (and already is having) a big
impact on chemical engineering. But classical machine learning approaches may be weak …
impact on chemical engineering. But classical machine learning approaches may be weak …
Process data analytics via probabilistic latent variable models: A tutorial review
Z Ge - Industrial & Engineering Chemistry Research, 2018 - ACS Publications
Dimensionality reduction is important for the high-dimensional nature of data in the process
industry, which has made latent variable modeling methods popular in recent years. By …
industry, which has made latent variable modeling methods popular in recent years. By …