Diffusion models: A comprehensive survey of methods and applications

L Yang, Z Zhang, Y Song, S Hong, R Xu, Y Zhao… - ACM Computing …, 2023 - dl.acm.org
Diffusion models have emerged as a powerful new family of deep generative models with
record-breaking performance in many applications, including image synthesis, video …

A review of irregular time series data handling with gated recurrent neural networks

PB Weerakody, KW Wong, G Wang, W Ela - Neurocomputing, 2021 - Elsevier
Irregular time series data is becoming increasingly prevalent with the growth of multi-sensor
systems as well as the continued use of unstructured manual data recording mechanisms …

Csdi: Conditional score-based diffusion models for probabilistic time series imputation

Y Tashiro, J Song, Y Song… - Advances in Neural …, 2021 - proceedings.neurips.cc
The imputation of missing values in time series has many applications in healthcare and
finance. While autoregressive models are natural candidates for time series imputation …

Saits: Self-attention-based imputation for time series

W Du, D Côté, Y Liu - Expert Systems with Applications, 2023 - Elsevier
Missing data in time series is a pervasive problem that puts obstacles in the way of
advanced analysis. A popular solution is imputation, where the fundamental challenge is to …

Generative time series forecasting with diffusion, denoise, and disentanglement

Y Li, X Lu, Y Wang, D Dou - Advances in Neural …, 2022 - proceedings.neurips.cc
Time series forecasting has been a widely explored task of great importance in many
applications. However, it is common that real-world time series data are recorded in a short …

Dynamical variational autoencoders: A comprehensive review

L Girin, S Leglaive, X Bie, J Diard, T Hueber… - arxiv preprint arxiv …, 2020 - arxiv.org
Variational autoencoders (VAEs) are powerful deep generative models widely used to
represent high-dimensional complex data through a low-dimensional latent space learned …

Learning latent seasonal-trend representations for time series forecasting

Z Wang, X Xu, W Zhang, G Trajcevski… - Advances in …, 2022 - proceedings.neurips.cc
Forecasting complex time series is ubiquitous and vital in a range of applications but
challenging. Recent advances endeavor to achieve progress by incorporating various deep …

Dfa-nerf: Personalized talking head generation via disentangled face attributes neural rendering

S Yao, RZ Zhong, Y Yan, G Zhai, X Yang - arxiv preprint arxiv:2201.00791, 2022 - arxiv.org
While recent advances in deep neural networks have made it possible to render high-quality
images, generating photo-realistic and personalized talking head remains challenging. With …

Priors in bayesian deep learning: A review

V Fortuin - International Statistical Review, 2022 - Wiley Online Library
While the choice of prior is one of the most critical parts of the Bayesian inference workflow,
recent Bayesian deep learning models have often fallen back on vague priors, such as …

Diffusion models for time-series applications: a survey

L Lin, Z Li, R Li, X Li, J Gao - Frontiers of Information Technology & …, 2024 - Springer
Diffusion models, a family of generative models based on deep learning, have become
increasingly prominent in cutting-edge machine learning research. With distinguished …