Oxygen loss in layered oxide cathodes for Li-ion batteries: mechanisms, effects, and mitigation

H Zhang, H Liu, LFJ Piper, MS Whittingham… - Chemical …, 2022 - ACS Publications
Layered lithium transition metal oxides derived from LiMO2 (M= Co, Ni, Mn, etc.) have been
widely adopted as the cathodes of Li-ion batteries for portable electronics, electric vehicles …

Challenges and recent advances in high capacity Li‐rich cathode materials for high energy density lithium‐ion batteries

W He, W Guo, H Wu, L Lin, Q Liu, X Han… - Advanced …, 2021 - Wiley Online Library
Li‐rich cathode materials have attracted increasing attention because of their high reversible
discharge capacity (> 250 mA hg− 1), which originates from transition metal (TM) ion redox …

Valuation of surface coatings in high-energy density lithium-ion battery cathode materials

U Nisar, N Muralidharan, R Essehli, R Amin… - Energy Storage …, 2021 - Elsevier
Artificial barriers, usually with either electrochemically active or inactive coating materials,
are deployed on cathode material surfaces to mitigate detrimental side reactions by …

Advances in the cathode materials for lithium rechargeable batteries

W Lee, S Muhammad, C Sergey, H Lee… - Angewandte Chemie …, 2020 - Wiley Online Library
The accelerating development of technologies requires a significant energy consumption,
and consequently the demand for advanced energy storage devices is increasing at a high …

High-voltage positive electrode materials for lithium-ion batteries

W Li, B Song, A Manthiram - Chemical Society Reviews, 2017 - pubs.rsc.org
The ever-growing demand for advanced rechargeable lithium-ion batteries in portable
electronics and electric vehicles has spurred intensive research efforts over the past decade …

Oxygen release degradation in Li‐ion battery cathode materials: mechanisms and mitigating approaches

S Sharifi‐Asl, J Lu, K Amine… - Advanced Energy …, 2019 - Wiley Online Library
Widespread application of Li‐ion batteries (LIBs) in large‐scale transportation and grid
storage systems requires highly stable and safe performance of the batteries in prolonged …

Persistent and partially mobile oxygen vacancies in Li-rich layered oxides

PM Csernica, SS Kalirai, WE Gent, K Lim, YS Yu, Y Liu… - Nature Energy, 2021 - nature.com
Increasing the energy density of layered oxide battery electrodes is challenging as
accessing high states of delithiation often triggers voltage degradation and oxygen release …

Electrode–electrolyte interfaces in lithium-based batteries

X Yu, A Manthiram - Energy & environmental science, 2018 - pubs.rsc.org
The electrode–electrolyte interface has been a critical concern since the birth of lithium (Li)-
based batteries (lithium or Li+-ion batteries) that are operated with liquid electrolytes and in …

Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2

U Maitra, RA House, JW Somerville, N Tapia-Ruiz… - Nature …, 2018 - nature.com
The search for improved energy-storage materials has revealed Li-and Na-rich intercalation
compounds as promising high-capacity cathodes. They exhibit capacities in excess of what …

New Insight into microstructure engineering of Ni‐Rich layered oxide cathode for high performance lithium ion batteries

CH Jung, DH Kim, D Eum, KH Kim… - Advanced Functional …, 2021 - Wiley Online Library
Ni‐rich layered LiNixCoyMn1− x− yO2 (LNCM) with Ni content over> 90% is considered as a
promising lithium ion battery (LIB) cathode, attributed by its low cost and high practical …