Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Domain generalization: A survey
Generalization to out-of-distribution (OOD) data is a capability natural to humans yet
challenging for machines to reproduce. This is because most learning algorithms strongly …
challenging for machines to reproduce. This is because most learning algorithms strongly …
Advances in adversarial attacks and defenses in computer vision: A survey
Deep Learning is the most widely used tool in the contemporary field of computer vision. Its
ability to accurately solve complex problems is employed in vision research to learn deep …
ability to accurately solve complex problems is employed in vision research to learn deep …
Robust and data-efficient generalization of self-supervised machine learning for diagnostic imaging
Abstract Machine-learning models for medical tasks can match or surpass the performance
of clinical experts. However, in settings differing from those of the training dataset, the …
of clinical experts. However, in settings differing from those of the training dataset, the …
Towards out-of-distribution generalization: A survey
Traditional machine learning paradigms are based on the assumption that both training and
test data follow the same statistical pattern, which is mathematically referred to as …
test data follow the same statistical pattern, which is mathematically referred to as …
A fourier-based framework for domain generalization
Modern deep neural networks suffer from performance degradation when evaluated on
testing data under different distributions from training data. Domain generalization aims at …
testing data under different distributions from training data. Domain generalization aims at …
Federated domain generalization with generalization adjustment
Abstract Federated Domain Generalization (FedDG) attempts to learn a global model in a
privacy-preserving manner that generalizes well to new clients possibly with domain shift …
privacy-preserving manner that generalizes well to new clients possibly with domain shift …
Generalizing to unseen domains: A survey on domain generalization
Machine learning systems generally assume that the training and testing distributions are
the same. To this end, a key requirement is to develop models that can generalize to unseen …
the same. To this end, a key requirement is to develop models that can generalize to unseen …
Rethinking domain generalization for face anti-spoofing: Separability and alignment
This work studies the generalization issue of face anti-spoofing (FAS) models on domain
gaps, such as image resolution, blurriness and sensor variations. Most prior works regard …
gaps, such as image resolution, blurriness and sensor variations. Most prior works regard …
Domain generalization via shuffled style assembly for face anti-spoofing
With diverse presentation attacks emerging continually, generalizable face anti-spoofing
(FAS) has drawn growing attention. Most existing methods implement domain generalization …
(FAS) has drawn growing attention. Most existing methods implement domain generalization …
Detecting and grounding multi-modal media manipulation
Misinformation has become a pressing issue. Fake media, in both visual and textual forms,
is widespread on the web. While various deepfake detection and text fake news detection …
is widespread on the web. While various deepfake detection and text fake news detection …