Explainable deep learning for efficient and robust pattern recognition: A survey of recent developments

X Bai, X Wang, X Liu, Q Liu, J Song, N Sebe, B Kim - Pattern Recognition, 2021 - Elsevier
Deep learning has recently achieved great success in many visual recognition tasks.
However, the deep neural networks (DNNs) are often perceived as black-boxes, making …

[HTML][HTML] A state-of-the-art survey on deep learning theory and architectures

MZ Alom, TM Taha, C Yakopcic, S Westberg, P Sidike… - electronics, 2019 - mdpi.com
In recent years, deep learning has garnered tremendous success in a variety of application
domains. This new field of machine learning has been growing rapidly and has been …

A survey of quantization methods for efficient neural network inference

A Gholami, S Kim, Z Dong, Z Yao… - Low-Power Computer …, 2022 - taylorfrancis.com
This chapter provides approaches to the problem of quantizing the numerical values in deep
Neural Network computations, covering the advantages/disadvantages of current methods …

Binary neural networks: A survey

H Qin, R Gong, X Liu, X Bai, J Song, N Sebe - Pattern Recognition, 2020 - Elsevier
The binary neural network, largely saving the storage and computation, serves as a
promising technique for deploying deep models on resource-limited devices. However, the …

In-memory mechanical computing

T Mei, CQ Chen - Nature Communications, 2023 - nature.com
Mechanical computing requires matter to adapt behavior according to retained knowledge,
often through integrated sensing, actuation, and control of deformation. However, inefficient …

A comprehensive survey on model compression and acceleration

T Choudhary, V Mishra, A Goswami… - Artificial Intelligence …, 2020 - Springer
In recent years, machine learning (ML) and deep learning (DL) have shown remarkable
improvement in computer vision, natural language processing, stock prediction, forecasting …

[HTML][HTML] Deep learning with spiking neurons: opportunities and challenges

M Pfeiffer, T Pfeil - Frontiers in neuroscience, 2018 - frontiersin.org
Spiking neural networks (SNNs) are inspired by information processing in biology, where
sparse and asynchronous binary signals are communicated and processed in a massively …

The history began from alexnet: A comprehensive survey on deep learning approaches

MZ Alom, TM Taha, C Yakopcic, S Westberg… - ar** activation for quantized neural networks
J Choi, Z Wang, S Venkataramani, PIJ Chuang… - arxiv preprint arxiv …, 2018 - arxiv.org
Deep learning algorithms achieve high classification accuracy at the expense of significant
computation cost. To address this cost, a number of quantization schemes have been …