Van der Waals heterostructures
The integration of dissimilar materials into heterostructures has become a powerful tool for
engineering interfaces and electronic structure. The advent of 2D materials has provided …
engineering interfaces and electronic structure. The advent of 2D materials has provided …
2D heterostructures for ubiquitous electronics and optoelectronics: principles, opportunities, and challenges
A grand family of two-dimensional (2D) materials and their heterostructures have been
discovered through the extensive experimental and theoretical efforts of chemists, material …
discovered through the extensive experimental and theoretical efforts of chemists, material …
Moiré photonics and optoelectronics
Moiré superlattices, the artificial quantum materials, have provided a wide range of
possibilities for the exploration of completely new physics and device architectures. In this …
possibilities for the exploration of completely new physics and device architectures. In this …
Layered materials as a platform for quantum technologies
Layered materials are taking centre stage in the ever-increasing research effort to develop
material platforms for quantum technologies. We are at the dawn of the era of layered …
material platforms for quantum technologies. We are at the dawn of the era of layered …
Emerging exciton physics in transition metal dichalcogenide heterobilayers
Atomically thin transition metal dichalcogenides (TMDs) are 2D semiconductors with tightly
bound excitons and correspondingly strong light–matter interactions. Owing to the weak van …
bound excitons and correspondingly strong light–matter interactions. Owing to the weak van …
Structure, properties and applications of two‐dimensional hexagonal boron nitride
Hexagonal boron nitride (h‐BN) has emerged as a strong candidate for two‐dimensional
(2D) material owing to its exciting optoelectrical properties combined with mechanical …
(2D) material owing to its exciting optoelectrical properties combined with mechanical …
Excitons in semiconductor moiré superlattices
Semiconductor moiré superlattices represent a rapidly develo** area of engineered
photonic materials and a new platform to explore correlated electron states and quantum …
photonic materials and a new platform to explore correlated electron states and quantum …
Excitonic devices with van der Waals heterostructures: valleytronics meets twistronics
Abstract 2D semiconducting transition metal dichalcogenides comprise an emerging class of
materials with distinct properties, including large exciton binding energies that reach …
materials with distinct properties, including large exciton binding energies that reach …
Excitons and emergent quantum phenomena in stacked 2D semiconductors
The design and control of material interfaces is a foundational approach to realize
technologically useful effects and engineer material properties. This is especially true for two …
technologically useful effects and engineer material properties. This is especially true for two …