Medical image segmentation review: The success of u-net

R Azad, EK Aghdam, A Rauland, Y Jia… - … on Pattern Analysis …, 2024 - ieeexplore.ieee.org
Automatic medical image segmentation is a crucial topic in the medical domain and
successively a critical counterpart in the computer-aided diagnosis paradigm. U-Net is the …

Advances in medical image analysis with vision transformers: a comprehensive review

R Azad, A Kazerouni, M Heidari, EK Aghdam… - Medical Image …, 2024 - Elsevier
The remarkable performance of the Transformer architecture in natural language processing
has recently also triggered broad interest in Computer Vision. Among other merits …

Convolutions die hard: Open-vocabulary segmentation with single frozen convolutional clip

Q Yu, J He, X Deng, X Shen… - Advances in Neural …, 2023 - proceedings.neurips.cc
Open-vocabulary segmentation is a challenging task requiring segmenting and recognizing
objects from an open set of categories in diverse environments. One way to address this …

Oneformer: One transformer to rule universal image segmentation

J Jain, J Li, MT Chiu, A Hassani… - Proceedings of the …, 2023 - openaccess.thecvf.com
Abstract Universal Image Segmentation is not a new concept. Past attempts to unify image
segmentation include scene parsing, panoptic segmentation, and, more recently, new …

Maxvit: Multi-axis vision transformer

Z Tu, H Talebi, H Zhang, F Yang, P Milanfar… - European conference on …, 2022 - Springer
Transformers have recently gained significant attention in the computer vision community.
However, the lack of scalability of self-attention mechanisms with respect to image size has …

Scaling up your kernels to 31x31: Revisiting large kernel design in cnns

X Ding, X Zhang, J Han, G Ding - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
We revisit large kernel design in modern convolutional neural networks (CNNs). Inspired by
recent advances in vision transformers (ViTs), in this paper, we demonstrate that using a few …

Unext: Mlp-based rapid medical image segmentation network

JMJ Valanarasu, VM Patel - … conference on medical image computing and …, 2022 - Springer
UNet and its latest extensions like TransUNet have been the leading medical image
segmentation methods in recent years. However, these networks cannot be effectively …

Transformers in medical imaging: A survey

F Shamshad, S Khan, SW Zamir, MH Khan… - Medical Image …, 2023 - Elsevier
Following unprecedented success on the natural language tasks, Transformers have been
successfully applied to several computer vision problems, achieving state-of-the-art results …

Transformer-based visual segmentation: A survey

X Li, H Ding, H Yuan, W Zhang, J Pang… - … on Pattern Analysis …, 2024 - ieeexplore.ieee.org
Visual segmentation seeks to partition images, video frames, or point clouds into multiple
segments or groups. This technique has numerous real-world applications, such as …

V2x-vit: Vehicle-to-everything cooperative perception with vision transformer

R Xu, H **ang, Z Tu, X **a, MH Yang, J Ma - European conference on …, 2022 - Springer
In this paper, we investigate the application of Vehicle-to-Everything (V2X) communication to
improve the perception performance of autonomous vehicles. We present a robust …