Exploration in deep reinforcement learning: A survey

P Ladosz, L Weng, M Kim, H Oh - Information Fusion, 2022 - Elsevier
This paper reviews exploration techniques in deep reinforcement learning. Exploration
techniques are of primary importance when solving sparse reward problems. In sparse …

Towards continual reinforcement learning: A review and perspectives

K Khetarpal, M Riemer, I Rish, D Precup - Journal of Artificial Intelligence …, 2022 - jair.org
In this article, we aim to provide a literature review of different formulations and approaches
to continual reinforcement learning (RL), also known as lifelong or non-stationary RL. We …

Mastering diverse domains through world models

D Hafner, J Pasukonis, J Ba, T Lillicrap - ar** a general algorithm that learns to solve tasks across a wide range of
applications has been a fundamental challenge in artificial intelligence. Although current …

A survey of zero-shot generalisation in deep reinforcement learning

R Kirk, A Zhang, E Grefenstette, T Rocktäschel - Journal of Artificial …, 2023 - jair.org
The study of zero-shot generalisation (ZSG) in deep Reinforcement Learning (RL) aims to
produce RL algorithms whose policies generalise well to novel unseen situations at …

A minimalist approach to offline reinforcement learning

S Fujimoto, SS Gu - Advances in neural information …, 2021 - proceedings.neurips.cc
Offline reinforcement learning (RL) defines the task of learning from a fixed batch of data.
Due to errors in value estimation from out-of-distribution actions, most offline RL algorithms …

Structured state space models for in-context reinforcement learning

C Lu, Y Schroecker, A Gu, E Parisotto… - Advances in …, 2023 - proceedings.neurips.cc
Structured state space sequence (S4) models have recently achieved state-of-the-art
performance on long-range sequence modeling tasks. These models also have fast …

Deep reinforcement learning for autonomous driving: A survey

BR Kiran, I Sobh, V Talpaert, P Mannion… - IEEE Transactions …, 2021 - ieeexplore.ieee.org
With the development of deep representation learning, the domain of reinforcement learning
(RL) has become a powerful learning framework now capable of learning complex policies …

Model-based reinforcement learning: A survey

TM Moerland, J Broekens, A Plaat… - … and Trends® in …, 2023 - nowpublishers.com
Sequential decision making, commonly formalized as Markov Decision Process (MDP)
optimization, is an important challenge in artificial intelligence. Two key approaches to this …

On the measure of intelligence

F Chollet - arxiv preprint arxiv:1911.01547, 2019 - arxiv.org
To make deliberate progress towards more intelligent and more human-like artificial
systems, we need to be following an appropriate feedback signal: we need to be able to …

Softgym: Benchmarking deep reinforcement learning for deformable object manipulation

X Lin, Y Wang, J Olkin, D Held - Conference on Robot …, 2021 - proceedings.mlr.press
Manipulating deformable objects has long been a challenge in robotics due to its high
dimensional state representation and complex dynamics. Recent success in deep …