The rise and potential of large language model based agents: A survey
For a long time, researchers have sought artificial intelligence (AI) that matches or exceeds
human intelligence. AI agents, which are artificial entities capable of sensing the …
human intelligence. AI agents, which are artificial entities capable of sensing the …
Safe learning in robotics: From learning-based control to safe reinforcement learning
The last half decade has seen a steep rise in the number of contributions on safe learning
methods for real-world robotic deployments from both the control and reinforcement learning …
methods for real-world robotic deployments from both the control and reinforcement learning …
A survey of zero-shot generalisation in deep reinforcement learning
The study of zero-shot generalisation (ZSG) in deep Reinforcement Learning (RL) aims to
produce RL algorithms whose policies generalise well to novel unseen situations at …
produce RL algorithms whose policies generalise well to novel unseen situations at …
Multi-agent deep reinforcement learning: a survey
The advances in reinforcement learning have recorded sublime success in various domains.
Although the multi-agent domain has been overshadowed by its single-agent counterpart …
Although the multi-agent domain has been overshadowed by its single-agent counterpart …
How to train your robot with deep reinforcement learning: lessons we have learned
Deep reinforcement learning (RL) has emerged as a promising approach for autonomously
acquiring complex behaviors from low-level sensor observations. Although a large portion of …
acquiring complex behaviors from low-level sensor observations. Although a large portion of …
Ai alignment: A comprehensive survey
AI alignment aims to make AI systems behave in line with human intentions and values. As
AI systems grow more capable, the potential large-scale risks associated with misaligned AI …
AI systems grow more capable, the potential large-scale risks associated with misaligned AI …
[HTML][HTML] Applications of reinforcement learning in energy systems
Energy systems undergo major transitions to facilitate the large-scale penetration of
renewable energy technologies and improve efficiencies, leading to the integration of many …
renewable energy technologies and improve efficiencies, leading to the integration of many …
Solving rubik's cube with a robot hand
We demonstrate that models trained only in simulation can be used to solve a manipulation
problem of unprecedented complexity on a real robot. This is made possible by two key …
problem of unprecedented complexity on a real robot. This is made possible by two key …
Rambo-rl: Robust adversarial model-based offline reinforcement learning
Offline reinforcement learning (RL) aims to find performant policies from logged data without
further environment interaction. Model-based algorithms, which learn a model of the …
further environment interaction. Model-based algorithms, which learn a model of the …
Learning agile robotic locomotion skills by imitating animals
Reproducing the diverse and agile locomotion skills of animals has been a longstanding
challenge in robotics. While manually-designed controllers have been able to emulate many …
challenge in robotics. While manually-designed controllers have been able to emulate many …