Enhancing computational fluid dynamics with machine learning
Abstract Machine learning is rapidly becoming a core technology for scientific computing,
with numerous opportunities to advance the field of computational fluid dynamics. Here we …
with numerous opportunities to advance the field of computational fluid dynamics. Here we …
Physics-informed machine learning: case studies for weather and climate modelling
Machine learning (ML) provides novel and powerful ways of accurately and efficiently
recognizing complex patterns, emulating nonlinear dynamics, and predicting the spatio …
recognizing complex patterns, emulating nonlinear dynamics, and predicting the spatio …
Combustion machine learning: Principles, progress and prospects
Progress in combustion science and engineering has led to the generation of large amounts
of data from large-scale simulations, high-resolution experiments, and sensors. This corpus …
of data from large-scale simulations, high-resolution experiments, and sensors. This corpus …
On neural differential equations
P Kidger - arxiv preprint arxiv:2202.02435, 2022 - arxiv.org
The conjoining of dynamical systems and deep learning has become a topic of great
interest. In particular, neural differential equations (NDEs) demonstrate that neural networks …
interest. In particular, neural differential equations (NDEs) demonstrate that neural networks …
Knowledge-integrated machine learning for materials: lessons from gameplaying and robotics
As materials researchers increasingly embrace machine-learning (ML) methods, it is natural
to wonder what lessons can be learned from other fields undergoing similar developments …
to wonder what lessons can be learned from other fields undergoing similar developments …
Promising directions of machine learning for partial differential equations
Partial differential equations (PDEs) are among the most universal and parsimonious
descriptions of natural physical laws, capturing a rich variety of phenomenology and …
descriptions of natural physical laws, capturing a rich variety of phenomenology and …
Ensemble-SINDy: Robust sparse model discovery in the low-data, high-noise limit, with active learning and control
Sparse model identification enables the discovery of nonlinear dynamical systems purely
from data; however, this approach is sensitive to noise, especially in the low-data limit. In this …
from data; however, this approach is sensitive to noise, especially in the low-data limit. In this …
Machine learning with data assimilation and uncertainty quantification for dynamical systems: a review
Data assimilation (DA) and uncertainty quantification (UQ) are extensively used in analysing
and reducing error propagation in high-dimensional spatial-temporal dynamics. Typical …
and reducing error propagation in high-dimensional spatial-temporal dynamics. Typical …
Discovering causal relations and equations from data
Physics is a field of science that has traditionally used the scientific method to answer
questions about why natural phenomena occur and to make testable models that explain the …
questions about why natural phenomena occur and to make testable models that explain the …
Physics-informed learning of governing equations from scarce data
Harnessing data to discover the underlying governing laws or equations that describe the
behavior of complex physical systems can significantly advance our modeling, simulation …
behavior of complex physical systems can significantly advance our modeling, simulation …