Enhancing computational fluid dynamics with machine learning

R Vinuesa, SL Brunton - Nature Computational Science, 2022 - nature.com
Abstract Machine learning is rapidly becoming a core technology for scientific computing,
with numerous opportunities to advance the field of computational fluid dynamics. Here we …

Physics-informed machine learning: case studies for weather and climate modelling

K Kashinath, M Mustafa, A Albert… - … of the Royal …, 2021 - royalsocietypublishing.org
Machine learning (ML) provides novel and powerful ways of accurately and efficiently
recognizing complex patterns, emulating nonlinear dynamics, and predicting the spatio …

Combustion machine learning: Principles, progress and prospects

M Ihme, WT Chung, AA Mishra - Progress in Energy and Combustion …, 2022 - Elsevier
Progress in combustion science and engineering has led to the generation of large amounts
of data from large-scale simulations, high-resolution experiments, and sensors. This corpus …

On neural differential equations

P Kidger - arxiv preprint arxiv:2202.02435, 2022 - arxiv.org
The conjoining of dynamical systems and deep learning has become a topic of great
interest. In particular, neural differential equations (NDEs) demonstrate that neural networks …

Knowledge-integrated machine learning for materials: lessons from gameplaying and robotics

K Hippalgaonkar, Q Li, X Wang, JW Fisher III… - Nature Reviews …, 2023 - nature.com
As materials researchers increasingly embrace machine-learning (ML) methods, it is natural
to wonder what lessons can be learned from other fields undergoing similar developments …

Promising directions of machine learning for partial differential equations

SL Brunton, JN Kutz - Nature Computational Science, 2024 - nature.com
Partial differential equations (PDEs) are among the most universal and parsimonious
descriptions of natural physical laws, capturing a rich variety of phenomenology and …

Ensemble-SINDy: Robust sparse model discovery in the low-data, high-noise limit, with active learning and control

U Fasel, JN Kutz, BW Brunton… - Proceedings of the …, 2022 - royalsocietypublishing.org
Sparse model identification enables the discovery of nonlinear dynamical systems purely
from data; however, this approach is sensitive to noise, especially in the low-data limit. In this …

Machine learning with data assimilation and uncertainty quantification for dynamical systems: a review

S Cheng, C Quilodrán-Casas, S Ouala… - IEEE/CAA Journal of …, 2023 - ieeexplore.ieee.org
Data assimilation (DA) and uncertainty quantification (UQ) are extensively used in analysing
and reducing error propagation in high-dimensional spatial-temporal dynamics. Typical …

Discovering causal relations and equations from data

G Camps-Valls, A Gerhardus, U Ninad, G Varando… - Physics Reports, 2023 - Elsevier
Physics is a field of science that has traditionally used the scientific method to answer
questions about why natural phenomena occur and to make testable models that explain the …

Physics-informed learning of governing equations from scarce data

Z Chen, Y Liu, H Sun - Nature communications, 2021 - nature.com
Harnessing data to discover the underlying governing laws or equations that describe the
behavior of complex physical systems can significantly advance our modeling, simulation …