Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Artificial intelligence in drug discovery: applications and techniques
Artificial intelligence (AI) has been transforming the practice of drug discovery in the past
decade. Various AI techniques have been used in many drug discovery applications, such …
decade. Various AI techniques have been used in many drug discovery applications, such …
Improving molecular contrastive learning via faulty negative mitigation and decomposed fragment contrast
Deep learning has been a prevalence in computational chemistry and widely implemented
in molecular property predictions. Recently, self-supervised learning (SSL), especially …
in molecular property predictions. Recently, self-supervised learning (SSL), especially …
Multi-modal molecule structure–text model for text-based retrieval and editing
There is increasing adoption of artificial intelligence in drug discovery. However, existing
studies use machine learning to mainly utilize the chemical structures of molecules but …
studies use machine learning to mainly utilize the chemical structures of molecules but …
Uni-mol: A universal 3d molecular representation learning framework
Molecular representation learning (MRL) has gained tremendous attention due to its critical
role in learning from limited supervised data for applications like drug design. In most MRL …
role in learning from limited supervised data for applications like drug design. In most MRL …
Pre-training molecular graph representation with 3d geometry
Molecular graph representation learning is a fundamental problem in modern drug and
material discovery. Molecular graphs are typically modeled by their 2D topological …
material discovery. Molecular graphs are typically modeled by their 2D topological …
Geometry-enhanced molecular representation learning for property prediction
Effective molecular representation learning is of great importance to facilitate molecular
property prediction. Recent advances for molecular representation learning have shown …
property prediction. Recent advances for molecular representation learning have shown …
Molecular contrastive learning of representations via graph neural networks
Molecular machine learning bears promise for efficient molecular property prediction and
drug discovery. However, labelled molecule data can be expensive and time consuming to …
drug discovery. However, labelled molecule data can be expensive and time consuming to …
Accurate prediction of molecular properties and drug targets using a self-supervised image representation learning framework
The clinical efficacy and safety of a drug is determined by its molecular properties and
targets in humans. However, proteome-wide evaluation of all compounds in humans, or …
targets in humans. However, proteome-wide evaluation of all compounds in humans, or …
Large-scale chemical language representations capture molecular structure and properties
Abstract Models based on machine learning can enable accurate and fast molecular
property predictions, which is of interest in drug discovery and material design. Various …
property predictions, which is of interest in drug discovery and material design. Various …
[HTML][HTML] A gentle introduction to graph neural networks
A Gentle Introduction to Graph Neural Networks Distill About Prize Submit A Gentle Introduction
to Graph Neural Networks Neural networks have been adapted to leverage the structure and …
to Graph Neural Networks Neural networks have been adapted to leverage the structure and …