Designing deep learning studies in cancer diagnostics

A Kleppe, OJ Skrede, S De Raedt, K Liestøl… - Nature Reviews …, 2021 - nature.com
The number of publications on deep learning for cancer diagnostics is rapidly increasing,
and systems are frequently claimed to perform comparable with or better than clinicians …

Are we learning yet? a meta review of evaluation failures across machine learning

T Liao, R Taori, ID Raji, L Schmidt - Thirty-fifth Conference on …, 2021 - openreview.net
Many subfields of machine learning share a common stumbling block: evaluation. Advances
in machine learning often evaporate under closer scrutiny or turn out to be less widely …

Art and the science of generative AI

Z Epstein, A Hertzmann… - Science, 2023 - science.org
The capabilities of a new class of tools, colloquially known as generative artificial
intelligence (AI), is a topic of much debate. One prominent application thus far is the …

Evaluating the social impact of generative ai systems in systems and society

I Solaiman, Z Talat, W Agnew, L Ahmad… - arxiv preprint arxiv …, 2023 - arxiv.org
Generative AI systems across modalities, ranging from text, image, audio, and video, have
broad social impacts, but there exists no official standard for means of evaluating those …

Deep spectral methods: A surprisingly strong baseline for unsupervised semantic segmentation and localization

L Melas-Kyriazi, C Rupprecht… - Proceedings of the …, 2022 - openaccess.thecvf.com
Unsupervised localization and segmentation are long-standing computer vision challenges
that involve decomposing an image into semantically-meaningful segments without any …

Fairface: Face attribute dataset for balanced race, gender, and age for bias measurement and mitigation

K Karkkainen, J Joo - Proceedings of the IEEE/CVF winter …, 2021 - openaccess.thecvf.com
Existing public face image datasets are strongly biased toward Caucasian faces, and other
races (eg, Latino) are significantly underrepresented. The models trained from such datasets …

Measuring robustness to natural distribution shifts in image classification

R Taori, A Dave, V Shankar, N Carlini… - Advances in …, 2020 - proceedings.neurips.cc
We study how robust current ImageNet models are to distribution shifts arising from natural
variations in datasets. Most research on robustness focuses on synthetic image …

Do datasets have politics? Disciplinary values in computer vision dataset development

MK Scheuerman, A Hanna, E Denton - … of the ACM on Human-Computer …, 2021 - dl.acm.org
Data is a crucial component of machine learning. The field is reliant on data to train, validate,
and test models. With increased technical capabilities, machine learning research has …

Large image datasets: A pyrrhic win for computer vision?

A Birhane, VU Prabhu - 2021 IEEE Winter Conference on …, 2021 - ieeexplore.ieee.org
In this paper we investigate problematic practices and consequences of large scale vision
datasets (LSVDs). We examine broad issues such as the question of consent and justice as …

Towards accountability for machine learning datasets: Practices from software engineering and infrastructure

B Hutchinson, A Smart, A Hanna, E Denton… - Proceedings of the …, 2021 - dl.acm.org
Datasets that power machine learning are often used, shared, and reused with little visibility
into the processes of deliberation that led to their creation. As artificial intelligence systems …