Human activity recognition in artificial intelligence framework: a narrative review
Human activity recognition (HAR) has multifaceted applications due to its worldly usage of
acquisition devices such as smartphones, video cameras, and its ability to capture human …
acquisition devices such as smartphones, video cameras, and its ability to capture human …
Transformers in vision: A survey
Astounding results from Transformer models on natural language tasks have intrigued the
vision community to study their application to computer vision problems. Among their salient …
vision community to study their application to computer vision problems. Among their salient …
Llava-onevision: Easy visual task transfer
We present LLaVA-OneVision, a family of open large multimodal models (LMMs) developed
by consolidating our insights into data, models, and visual representations in the LLaVA …
by consolidating our insights into data, models, and visual representations in the LLaVA …
Diffusiondet: Diffusion model for object detection
We propose DiffusionDet, a new framework that formulates object detection as a denoising
diffusion process from noisy boxes to object boxes. During the training stage, object boxes …
diffusion process from noisy boxes to object boxes. During the training stage, object boxes …
Sequential modeling enables scalable learning for large vision models
We introduce a novel sequential modeling approach which enables learning a Large Vision
Model (LVM) without making use of any linguistic data. To do this we define a common …
Model (LVM) without making use of any linguistic data. To do this we define a common …
S4nd: Modeling images and videos as multidimensional signals with state spaces
Visual data such as images and videos are typically modeled as discretizations of inherently
continuous, multidimensional signals. Existing continuous-signal models attempt to exploit …
continuous, multidimensional signals. Existing continuous-signal models attempt to exploit …
Multiscale vision transformers
Abstract We present Multiscale Vision Transformers (MViT) for video and image recognition,
by connecting the seminal idea of multiscale feature hierarchies with transformer models …
by connecting the seminal idea of multiscale feature hierarchies with transformer models …
Frozen in time: A joint video and image encoder for end-to-end retrieval
Our objective in this work is video-text retrieval-in particular a joint embedding that enables
efficient text-to-video retrieval. The challenges in this area include the design of the visual …
efficient text-to-video retrieval. The challenges in this area include the design of the visual …
Actionclip: A new paradigm for video action recognition
The canonical approach to video action recognition dictates a neural model to do a classic
and standard 1-of-N majority vote task. They are trained to predict a fixed set of predefined …
and standard 1-of-N majority vote task. They are trained to predict a fixed set of predefined …
SEED-Bench: Benchmarking Multimodal Large Language Models
Multimodal large language models (MLLMs) building upon the foundation of powerful large
language models (LLMs) have recently demonstrated exceptional capabilities in generating …
language models (LLMs) have recently demonstrated exceptional capabilities in generating …