Mathematical problems of nematic liquid crystals: between dynamical and stationary problems

A Zarnescu - … Transactions of the Royal Society A, 2021 - royalsocietypublishing.org
Mathematical studies of nematic liquid crystals address in general two rather different
perspectives: that of fluid mechanics and that of calculus of variations. The former focuses on …

Stability of the melting hedgehog in the Landau–de Gennes theory of nematic liquid crystals

R Ignat, L Nguyen, V Slastikov, A Zarnescu - Archive for Rational …, 2015 - Springer
We investigate stability properties of the radially symmetric solution corresponding to the
vortex defect (the so called “melting hedgehog”) in the framework of the Landau–de Gennes …

Spherical Particle in Nematic Liquid Crystal with a Magnetic Field and Planar Anchoring

L Bronsard, D Louizos, D Stantejsky - Journal of Nonlinear Science, 2025 - Springer
We study minimizers of the Landau-de Gennes energy in R 3\B 1 (0) with external magnetic
field in the large particle limit. We impose strong tangential anchoring and uniaxiality of the …

Minimizers of the Landau–de Gennes energy around a spherical colloid particle

S Alama, L Bronsard, X Lamy - Archive for Rational Mechanics and …, 2016 - Springer
We consider energy minimizing configurations of a nematic liquid crystal around a spherical
colloid particle, in the context of the Landau–de Gennes model. The nematic is assumed to …

[HTML][HTML] Instability of point defects in a two-dimensional nematic liquid crystal model

R Ignat, L Nguyen, V Slastikov, A Zarnescu - … de l'Institut Henri Poincaré C …, 2016 - Elsevier
We study a class of symmetric critical points in a variational 2D Landau–de Gennes model
where the state of nematic liquid crystals is described by symmetric traceless 3× 3 matrices …

Stability of point defects of degree in a two-dimensional nematic liquid crystal model

R Ignat, L Nguyen, V Slastikov, A Zarnescu - Calculus of Variations and …, 2016 - Springer
We study k-radially symmetric solutions corresponding to topological defects of charge k 2 k
2 for integer k\not= 0 k≠ 0 in the Landau-de Gennes model describing liquid crystals in two …

Half-Integer Point Defects in the Q-Tensor Theory of Nematic Liquid Crystals

G Di Fratta, JM Robbins, V Slastikov… - Journal of Nonlinear …, 2016 - Springer
We investigate prototypical profiles of point defects in two-dimensional liquid crystals within
the framework of Landau–de Gennes theory. Using boundary conditions characteristic of …

On the uniqueness of minimisers of Ginzburg-Landau functionals

R Ignat, L Nguyen, V Slastikov, A Zarnescu - arxiv preprint arxiv …, 2017 - arxiv.org
We provide necessary and sufficient conditions for the uniqueness of minimisers of the
Ginzburg-Landau functional for $\mathbb {R}^ n $-valued maps under a suitable convexity …

Torus-like solutions for the landau-de gennes model. part i: the lyuksyutov regime

F Dipasquale, V Millot, A Pisante - Archive for Rational Mechanics and …, 2021 - Springer
We study global minimizers of a continuum Landau-de Gennes energy functional for
nematic liquid crystals, in three-dimensional domains, under a Dirichlet boundary condition …

Local minimality of RN-valued and SN-valued Ginzburg–Landau vortex solutions in the unit ball BN

R Ignat, L Nguyen - arxiv preprint arxiv:2111.07669, 2021 - ems.press
Local minimality of RN -valued and SN -valued Ginzburg–Landau vortex solutions in the unit
ball BN Page 1 Ann. Inst. H. PoincarÈ Anal. Non LinÈaire (Online first) DOI 10.4171/AIHPC/84 …