Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Software testing with large language models: Survey, landscape, and vision
Pre-trained large language models (LLMs) have recently emerged as a breakthrough
technology in natural language processing and artificial intelligence, with the ability to …
technology in natural language processing and artificial intelligence, with the ability to …
A survey on deep neural network pruning: Taxonomy, comparison, analysis, and recommendations
Modern deep neural networks, particularly recent large language models, come with
massive model sizes that require significant computational and storage resources. To …
massive model sizes that require significant computational and storage resources. To …
Depth anything: Unleashing the power of large-scale unlabeled data
Abstract This work presents Depth Anything a highly practical solution for robust monocular
depth estimation. Without pursuing novel technical modules we aim to build a simple yet …
depth estimation. Without pursuing novel technical modules we aim to build a simple yet …
Scaling up gans for text-to-image synthesis
The recent success of text-to-image synthesis has taken the world by storm and captured the
general public's imagination. From a technical standpoint, it also marked a drastic change in …
general public's imagination. From a technical standpoint, it also marked a drastic change in …
Open-vocabulary panoptic segmentation with text-to-image diffusion models
We present ODISE: Open-vocabulary DIffusion-based panoptic SEgmentation, which unifies
pre-trained text-image diffusion and discriminative models to perform open-vocabulary …
pre-trained text-image diffusion and discriminative models to perform open-vocabulary …
Latent consistency models: Synthesizing high-resolution images with few-step inference
Latent Diffusion models (LDMs) have achieved remarkable results in synthesizing high-
resolution images. However, the iterative sampling process is computationally intensive and …
resolution images. However, the iterative sampling process is computationally intensive and …
Score jacobian chaining: Lifting pretrained 2d diffusion models for 3d generation
A diffusion model learns to predict a vector field of gradients. We propose to apply chain rule
on the learned gradients, and back-propagate the score of a diffusion model through the …
on the learned gradients, and back-propagate the score of a diffusion model through the …
Implicit diffusion models for continuous super-resolution
Image super-resolution (SR) has attracted increasing attention due to its wide applications.
However, current SR methods generally suffer from over-smoothing and artifacts, and most …
However, current SR methods generally suffer from over-smoothing and artifacts, and most …
Patch diffusion: Faster and more data-efficient training of diffusion models
Diffusion models are powerful, but they require a lot of time and data to train. We propose
Patch Diffusion, a generic patch-wise training framework, to significantly reduce the training …
Patch Diffusion, a generic patch-wise training framework, to significantly reduce the training …
Generative diffusion prior for unified image restoration and enhancement
Existing image restoration methods mostly leverage the posterior distribution of natural
images. However, they often assume known degradation and also require supervised …
images. However, they often assume known degradation and also require supervised …