Deep learning in human activity recognition with wearable sensors: A review on advances

S Zhang, Y Li, S Zhang, F Shahabi, S **a, Y Deng… - Sensors, 2022 - mdpi.com
Mobile and wearable devices have enabled numerous applications, including activity
tracking, wellness monitoring, and human–computer interaction, that measure and improve …

Human activity recognition in artificial intelligence framework: a narrative review

N Gupta, SK Gupta, RK Pathak, V Jain… - Artificial intelligence …, 2022 - Springer
Human activity recognition (HAR) has multifaceted applications due to its worldly usage of
acquisition devices such as smartphones, video cameras, and its ability to capture human …

A survey of deep active learning

P Ren, Y **ao, X Chang, PY Huang, Z Li… - ACM computing …, 2021 - dl.acm.org
Active learning (AL) attempts to maximize a model's performance gain while annotating the
fewest samples possible. Deep learning (DL) is greedy for data and requires a large amount …

Sensor-based and vision-based human activity recognition: A comprehensive survey

LM Dang, K Min, H Wang, MJ Piran, CH Lee, H Moon - Pattern Recognition, 2020 - Elsevier
Human activity recognition (HAR) technology that analyzes data acquired from various types
of sensing devices, including vision sensors and embedded sensors, has motivated the …

Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review

E Ramanujam, T Perumal… - IEEE Sensors Journal, 2021 - ieeexplore.ieee.org
Human Activity Recognition (HAR) is a field that infers human activities from raw time-series
signals acquired through embedded sensors of smartphones and wearable devices. It has …

A survey on deep learning for human activity recognition

F Gu, MH Chung, M Chignell, S Valaee… - ACM Computing …, 2021 - dl.acm.org
Human activity recognition is a key to a lot of applications such as healthcare and smart
home. In this study, we provide a comprehensive survey on recent advances and challenges …

A comprehensive survey on multi-view clustering

U Fang, M Li, J Li, L Gao, T Jia… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
The development of information gathering and extraction technology has led to the
popularity of multi-view data, which enables samples to be seen from numerous …

Deep learning for sensor-based human activity recognition: Overview, challenges, and opportunities

K Chen, D Zhang, L Yao, B Guo, Z Yu… - ACM Computing Surveys …, 2021 - dl.acm.org
The vast proliferation of sensor devices and Internet of Things enables the applications of
sensor-based activity recognition. However, there exist substantial challenges that could …

Machine learning for microcontroller-class hardware: A review

SS Saha, SS Sandha, M Srivastava - IEEE Sensors Journal, 2022 - ieeexplore.ieee.org
The advancements in machine learning (ML) opened a new opportunity to bring intelligence
to the low-end Internet-of-Things (IoT) nodes, such as microcontrollers. Conventional ML …

Structural deep clustering network

D Bo, X Wang, C Shi, M Zhu, E Lu, P Cui - Proceedings of the web …, 2020 - dl.acm.org
Clustering is a fundamental task in data analysis. Recently, deep clustering, which derives
inspiration primarily from deep learning approaches, achieves state-of-the-art performance …