Artificial intelligence for industry 4.0: Systematic review of applications, challenges, and opportunities

Z Jan, F Ahamed, W Mayer, N Patel… - Expert Systems with …, 2023 - Elsevier
Many industry sectors have been pursuing the adoption of Industry 4.0 (I4. 0) ideas and
technologies, which promise to realize lean and just-in-time production through digitization …

Decentralized federated learning: Fundamentals, state of the art, frameworks, trends, and challenges

ETM Beltrán, MQ Pérez, PMS Sánchez… - … Surveys & Tutorials, 2023 - ieeexplore.ieee.org
In recent years, Federated Learning (FL) has gained relevance in training collaborative
models without sharing sensitive data. Since its birth, Centralized FL (CFL) has been the …

Federated learning for smart cities: A comprehensive survey

S Pandya, G Srivastava, R Jhaveri, MR Babu… - Sustainable Energy …, 2023 - Elsevier
With the advent of new technologies such as the Artificial Intelligence of Things (AIoT), big
data, fog computing, and edge computing, smart city applications have suffered from issues …

Towards resilience in Industry 5.0: A decentralized autonomous manufacturing paradigm

J Leng, Y Zhong, Z Lin, K Xu, D Mourtzis, X Zhou… - Journal of Manufacturing …, 2023 - Elsevier
Manufacturers are increasingly aware of the importance of system resilience against
unexpected disruptive occurrences, such as the recent global Covid-19 pandemic and …

[HTML][HTML] Modern computing: Vision and challenges

SS Gill, H Wu, P Patros, C Ottaviani, P Arora… - … and Informatics Reports, 2024 - Elsevier
Over the past six decades, the computing systems field has experienced significant
transformations, profoundly impacting society with transformational developments, such as …

Blockchain-empowered federated learning: Challenges, solutions, and future directions

J Zhu, J Cao, D Saxena, S Jiang, H Ferradi - ACM Computing Surveys, 2023 - dl.acm.org
Federated learning is a privacy-preserving machine learning technique that trains models
across multiple devices holding local data samples without exchanging them. There are …

When federated learning meets privacy-preserving computation

J Chen, H Yan, Z Liu, M Zhang, H **ong… - ACM Computing Surveys, 2024 - dl.acm.org
Nowadays, with the development of artificial intelligence (AI), privacy issues attract wide
attention from society and individuals. It is desirable to make the data available but invisible …

A survey of blockchain and intelligent networking for the metaverse

Y Fu, C Li, FR Yu, TH Luan, P Zhao… - IEEE Internet of Things …, 2022 - ieeexplore.ieee.org
The virtual world created by the development of the Internet, computers, artificial intelligence
(AI), and hardware technologies have brought various degrees of digital transformation to …

Federated learning for internet of things: A comprehensive survey

DC Nguyen, M Ding, PN Pathirana… - … Surveys & Tutorials, 2021 - ieeexplore.ieee.org
The Internet of Things (IoT) is penetrating many facets of our daily life with the proliferation of
intelligent services and applications empowered by artificial intelligence (AI). Traditionally …

Decentralized federated learning: A survey and perspective

L Yuan, Z Wang, L Sun, SY Philip… - IEEE Internet of Things …, 2024 - ieeexplore.ieee.org
Federated learning (FL) has been gaining attention for its ability to share knowledge while
maintaining user data, protecting privacy, increasing learning efficiency, and reducing …