Security and privacy challenges of large language models: A survey

BC Das, MH Amini, Y Wu - ACM Computing Surveys, 2025 - dl.acm.org
Large language models (LLMs) have demonstrated extraordinary capabilities and
contributed to multiple fields, such as generating and summarizing text, language …

Machine learning for synthetic data generation: a review

Y Lu, M Shen, H Wang, X Wang, C van Rechem… - arxiv preprint arxiv …, 2023 - arxiv.org
Machine learning heavily relies on data, but real-world applications often encounter various
data-related issues. These include data of poor quality, insufficient data points leading to …

Trustworthy llms: a survey and guideline for evaluating large language models' alignment

Y Liu, Y Yao, JF Ton, X Zhang, R Guo, H Cheng… - arxiv preprint arxiv …, 2023 - arxiv.org
Ensuring alignment, which refers to making models behave in accordance with human
intentions [1, 2], has become a critical task before deploying large language models (LLMs) …

Propile: Probing privacy leakage in large language models

S Kim, S Yun, H Lee, M Gubri… - Advances in Neural …, 2023 - proceedings.neurips.cc
The rapid advancement and widespread use of large language models (LLMs) have raised
significant concerns regarding the potential leakage of personally identifiable information …

A survey on ChatGPT: AI–generated contents, challenges, and solutions

Y Wang, Y Pan, M Yan, Z Su… - IEEE Open Journal of the …, 2023 - ieeexplore.ieee.org
With the widespread use of large artificial intelligence (AI) models such as ChatGPT, AI-
generated content (AIGC) has garnered increasing attention and is leading a paradigm shift …

Fedala: Adaptive local aggregation for personalized federated learning

J Zhang, Y Hua, H Wang, T Song, Z Xue… - Proceedings of the …, 2023 - ojs.aaai.org
A key challenge in federated learning (FL) is the statistical heterogeneity that impairs the
generalization of the global model on each client. To address this, we propose a method …

Edge learning for B5G networks with distributed signal processing: Semantic communication, edge computing, and wireless sensing

W Xu, Z Yang, DWK Ng, M Levorato… - IEEE journal of …, 2023 - ieeexplore.ieee.org
To process and transfer large amounts of data in emerging wireless services, it has become
increasingly appealing to exploit distributed data communication and learning. Specifically …

Shifting machine learning for healthcare from development to deployment and from models to data

A Zhang, L **ng, J Zou, JC Wu - Nature biomedical engineering, 2022 - nature.com
In the past decade, the application of machine learning (ML) to healthcare has helped drive
the automation of physician tasks as well as enhancements in clinical capabilities and …

Blockchain-based federated learning for securing internet of things: A comprehensive survey

W Issa, N Moustafa, B Turnbull, N Sohrabi… - ACM Computing …, 2023 - dl.acm.org
The Internet of Things (IoT) ecosystem connects physical devices to the internet, offering
significant advantages in agility, responsiveness, and potential environmental benefits. The …

A comprehensive survey on poisoning attacks and countermeasures in machine learning

Z Tian, L Cui, J Liang, S Yu - ACM Computing Surveys, 2022 - dl.acm.org
The prosperity of machine learning has been accompanied by increasing attacks on the
training process. Among them, poisoning attacks have become an emerging threat during …