Transformers in medical imaging: A survey

F Shamshad, S Khan, SW Zamir, MH Khan… - Medical Image …, 2023 - Elsevier
Following unprecedented success on the natural language tasks, Transformers have been
successfully applied to several computer vision problems, achieving state-of-the-art results …

Transformers in medical image segmentation: A review

H **ao, L Li, Q Liu, X Zhu, Q Zhang - Biomedical Signal Processing and …, 2023 - Elsevier
Abstract Background and Objectives: Transformer is a model relying entirely on self-
attention which has a wide range of applications in the field of natural language processing …

SwinBTS: A method for 3D multimodal brain tumor segmentation using swin transformer

Y Jiang, Y Zhang, X Lin, J Dong, T Cheng, J Liang - Brain sciences, 2022 - mdpi.com
Brain tumor semantic segmentation is a critical medical image processing work, which aids
clinicians in diagnosing patients and determining the extent of lesions. Convolutional neural …

Transforming medical imaging with Transformers? A comparative review of key properties, current progresses, and future perspectives

J Li, J Chen, Y Tang, C Wang, BA Landman… - Medical image …, 2023 - Elsevier
Transformer, one of the latest technological advances of deep learning, has gained
prevalence in natural language processing or computer vision. Since medical imaging bear …

Brain tumor diagnosis using machine learning, convolutional neural networks, capsule neural networks and vision transformers, applied to MRI: a survey

AA Akinyelu, F Zaccagna, JT Grist, M Castelli… - Journal of …, 2022 - mdpi.com
Management of brain tumors is based on clinical and radiological information with
presumed grade dictating treatment. Hence, a non-invasive assessment of tumor grade is of …

An early detection and segmentation of Brain Tumor using Deep Neural Network

M Aggarwal, AK Tiwari, MP Sarathi… - BMC Medical Informatics …, 2023 - Springer
Background Magnetic resonance image (MRI) brain tumor segmentation is crucial and
important in the medical field, which can help in diagnosis and prognosis, overall growth …

Brain tumor segmentation and classification on MRI via deep hybrid representation learning

N Farajzadeh, N Sadeghzadeh… - Expert Systems with …, 2023 - Elsevier
Detecting brain tumors plays an important role in patients' lives as it can help specialists
save them or let them succumb to a terminal illness otherwise. Magnetic Resonance …

Vision transformers for dense prediction: A survey

S Zuo, Y **ao, X Chang, X Wang - Knowledge-Based Systems, 2022 - Elsevier
Transformers have demonstrated impressive expressiveness and transfer capability in
computer vision fields. Dense prediction is a fundamental problem in computer vision that is …

Recent progress in transformer-based medical image analysis

Z Liu, Q Lv, Z Yang, Y Li, CH Lee, L Shen - Computers in Biology and …, 2023 - Elsevier
The transformer is primarily used in the field of natural language processing. Recently, it has
been adopted and shows promise in the computer vision (CV) field. Medical image analysis …

Bridged-U-Net-ASPP-EVO and deep learning optimization for brain tumor segmentation

R Yousef, S Khan, G Gupta, BM Albahlal, SA Alajlan… - Diagnostics, 2023 - mdpi.com
Brain tumor segmentation from Magnetic Resonance Images (MRI) is considered a big
challenge due to the complexity of brain tumor tissues, and segmenting these tissues from …