Algorithms for verifying deep neural networks

C Liu, T Arnon, C Lazarus, C Strong… - … and Trends® in …, 2021 - nowpublishers.com
Deep neural networks are widely used for nonlinear function approximation, with
applications ranging from computer vision to control. Although these networks involve the …

Assuring the machine learning lifecycle: Desiderata, methods, and challenges

R Ashmore, R Calinescu, C Paterson - ACM Computing Surveys (CSUR), 2021 - dl.acm.org
Machine learning has evolved into an enabling technology for a wide range of highly
successful applications. The potential for this success to continue and accelerate has placed …

Are formal methods applicable to machine learning and artificial intelligence?

M Krichen, A Mihoub, MY Alzahrani… - … Conference of Smart …, 2022 - ieeexplore.ieee.org
Formal approaches can provide strict correctness guarantees for the development of both
hardware and software systems. In this work, we examine state-of-the-art formal methods for …

NNV: the neural network verification tool for deep neural networks and learning-enabled cyber-physical systems

HD Tran, X Yang, D Manzanas Lopez, P Musau… - … on Computer Aided …, 2020 - Springer
This paper presents the Neural Network Verification (NNV) software tool, a set-based
verification framework for deep neural networks (DNNs) and learning-enabled cyber …

First three years of the international verification of neural networks competition (VNN-COMP)

C Brix, MN Müller, S Bak, TT Johnson, C Liu - International Journal on …, 2023 - Springer
This paper presents a summary and meta-analysis of the first three iterations of the annual
International Verification of Neural Networks Competition (VNN-COMP), held in 2020, 2021 …

The second international verification of neural networks competition (vnn-comp 2021): Summary and results

S Bak, C Liu, T Johnson - arxiv preprint arxiv:2109.00498, 2021 - arxiv.org
This report summarizes the second International Verification of Neural Networks
Competition (VNN-COMP 2021), held as a part of the 4th Workshop on Formal Methods for …

Towards quantum enhanced adversarial robustness in machine learning

MT West, SL Tsang, JS Low, CD Hill, C Leckie… - Nature Machine …, 2023 - nature.com
Abstract Machine learning algorithms are powerful tools for data-driven tasks such as image
classification and feature detection. However, their vulnerability to adversarial examples …

The third international verification of neural networks competition (VNN-COMP 2022): Summary and results

MN Müller, C Brix, S Bak, C Liu, TT Johnson - arxiv preprint arxiv …, 2022 - arxiv.org
This report summarizes the 3rd International Verification of Neural Networks Competition
(VNN-COMP 2022), held as a part of the 5th Workshop on Formal Methods for ML-Enabled …

[PDF][PDF] DEEPSPLIT: An Efficient Splitting Method for Neural Network Verification via Indirect Effect Analysis.

P Henriksen, A Lomuscio - IJCAI, 2021 - ijcai.org
We propose a novel, complete algorithm for the verification and analysis of feed-forward,
ReLU-based neural networks. The algorithm, based on symbolic interval propagation …

NNV 2.0: the neural network verification tool

DM Lopez, SW Choi, HD Tran, TT Johnson - International Conference on …, 2023 - Springer
This manuscript presents the updated version of the Neural Network Verification (NNV) tool.
NNV is a formal verification software tool for deep learning models and cyber-physical …