[HTML][HTML] Summary of chatgpt-related research and perspective towards the future of large language models

Y Liu, T Han, S Ma, J Zhang, Y Yang, J Tian, H He, A Li… - Meta-Radiology, 2023 - Elsevier
This paper presents a comprehensive survey of ChatGPT-related (GPT-3.5 and GPT-4)
research, state-of-the-art large language models (LLM) from the GPT series, and their …

Ethical machine learning in healthcare

IY Chen, E Pierson, S Rose, S Joshi… - Annual review of …, 2021 - annualreviews.org
The use of machine learning (ML) in healthcare raises numerous ethical concerns,
especially as models can amplify existing health inequities. Here, we outline ethical …

D'ya like dags? a survey on structure learning and causal discovery

MJ Vowels, NC Camgoz, R Bowden - ACM Computing Surveys, 2022 - dl.acm.org
Causal reasoning is a crucial part of science and human intelligence. In order to discover
causal relationships from data, we need structure discovery methods. We provide a review …

Methods and tools for causal discovery and causal inference

AR Nogueira, A Pugnana, S Ruggieri… - … reviews: data mining …, 2022 - Wiley Online Library
Causality is a complex concept, which roots its developments across several fields, such as
statistics, economics, epidemiology, computer science, and philosophy. In recent years, the …

Granger causality: A review and recent advances

A Shojaie, EB Fox - Annual Review of Statistics and Its …, 2022 - annualreviews.org
Introduced more than a half-century ago, Granger causality has become a popular tool for
analyzing time series data in many application domains, from economics and finance to …

Causal inference and counterfactual prediction in machine learning for actionable healthcare

M Prosperi, Y Guo, M Sperrin, JS Koopman… - Nature Machine …, 2020 - nature.com
Big data, high-performance computing, and (deep) machine learning are increasingly
becoming key to precision medicine—from identifying disease risks and taking preventive …

Survey and evaluation of causal discovery methods for time series

CK Assaad, E Devijver, E Gaussier - Journal of Artificial Intelligence …, 2022 - jair.org
We introduce in this survey the major concepts, models, and algorithms proposed so far to
infer causal relations from observational time series, a task usually referred to as causal …

Secure and robust machine learning for healthcare: A survey

A Qayyum, J Qadir, M Bilal… - IEEE Reviews in …, 2020 - ieeexplore.ieee.org
Recent years have witnessed widespread adoption of machine learning (ML)/deep learning
(DL) techniques due to their superior performance for a variety of healthcare applications …

Discovering causal relations and equations from data

G Camps-Valls, A Gerhardus, U Ninad, G Varando… - Physics Reports, 2023 - Elsevier
Physics is a field of science that has traditionally used the scientific method to answer
questions about why natural phenomena occur and to make testable models that explain the …

Identifiability guarantees for causal disentanglement from soft interventions

J Zhang, K Greenewald, C Squires… - Advances in …, 2024 - proceedings.neurips.cc
Causal disentanglement aims to uncover a representation of data using latent variables that
are interrelated through a causal model. Such a representation is identifiable if the latent …