Learning under concept drift: A review
Concept drift describes unforeseeable changes in the underlying distribution of streaming
data overtime. Concept drift research involves the development of methodologies and …
data overtime. Concept drift research involves the development of methodologies and …
Machine learning for streaming data: state of the art, challenges, and opportunities
Incremental learning, online learning, and data stream learning are terms commonly
associated with learning algorithms that update their models given a continuous influx of …
associated with learning algorithms that update their models given a continuous influx of …
River: machine learning for streaming data in python
River is a machine learning library for dynamic data streams and continual learning. It
provides multiple state-of-the-art learning methods, data generators/transformers …
provides multiple state-of-the-art learning methods, data generators/transformers …
Scikit-multiflow: A multi-output streaming framework
scikit-multiflow is a framework for learning from data streams and multi-output learning in
Python. Conceived to serve as a platform to encourage the democratization of stream …
Python. Conceived to serve as a platform to encourage the democratization of stream …
A survey on learning from imbalanced data streams: taxonomy, challenges, empirical study, and reproducible experimental framework
Class imbalance poses new challenges when it comes to classifying data streams. Many
algorithms recently proposed in the literature tackle this problem using a variety of data …
algorithms recently proposed in the literature tackle this problem using a variety of data …
Memory efficient experience replay for streaming learning
In supervised machine learning, an agent is typically trained once and then deployed. While
this works well for static settings, robots often operate in changing environments and must …
this works well for static settings, robots often operate in changing environments and must …
ROSE: robust online self-adjusting ensemble for continual learning on imbalanced drifting data streams
Data streams are potentially unbounded sequences of instances arriving over time to a
classifier. Designing algorithms that are capable of dealing with massive, rapidly arriving …
classifier. Designing algorithms that are capable of dealing with massive, rapidly arriving …
A lightweight concept drift detection and adaptation framework for IoT data streams
In recent years, with the increasing popularity of “Smart Technology”, the number of Internet
of Things (IoT) devices and systems have surged significantly. Various IoT services and …
of Things (IoT) devices and systems have surged significantly. Various IoT services and …
Data stream analysis: Foundations, major tasks and tools
The significant growth of interconnected Internet‐of‐Things (IoT) devices, the use of social
networks, along with the evolution of technology in different domains, lead to a rise in the …
networks, along with the evolution of technology in different domains, lead to a rise in the …
[HTML][HTML] A survey on machine learning for recurring concept drifting data streams
The problem of concept drift has gained a lot of attention in recent years. This aspect is key
in many domains exhibiting non-stationary as well as cyclic patterns and structural breaks …
in many domains exhibiting non-stationary as well as cyclic patterns and structural breaks …