Federated learning for smart healthcare: A survey
Recent advances in communication technologies and the Internet-of-Medical-Things (IOMT)
have transformed smart healthcare enabled by artificial intelligence (AI). Traditionally, AI …
have transformed smart healthcare enabled by artificial intelligence (AI). Traditionally, AI …
[HTML][HTML] Privacy-preserving artificial intelligence in healthcare: Techniques and applications
There has been an increasing interest in translating artificial intelligence (AI) research into
clinically-validated applications to improve the performance, capacity, and efficacy of …
clinically-validated applications to improve the performance, capacity, and efficacy of …
Feddg: Federated domain generalization on medical image segmentation via episodic learning in continuous frequency space
Federated learning allows distributed medical institutions to collaboratively learn a shared
prediction model with privacy protection. While at clinical deployment, the models trained in …
prediction model with privacy protection. While at clinical deployment, the models trained in …
Federated learning enables big data for rare cancer boundary detection
Although machine learning (ML) has shown promise across disciplines, out-of-sample
generalizability is concerning. This is currently addressed by sharing multi-site data, but …
generalizability is concerning. This is currently addressed by sharing multi-site data, but …
End-to-end privacy preserving deep learning on multi-institutional medical imaging
Using large, multi-national datasets for high-performance medical imaging AI systems
requires innovation in privacy-preserving machine learning so models can train on sensitive …
requires innovation in privacy-preserving machine learning so models can train on sensitive …
[HTML][HTML] Federated learning for secure IoMT-applications in smart healthcare systems: A comprehensive review
Recent developments in the Internet of Things (IoT) and various communication
technologies have reshaped numerous application areas. Nowadays, IoT is assimilated into …
technologies have reshaped numerous application areas. Nowadays, IoT is assimilated into …
Federated learning for predicting clinical outcomes in patients with COVID-19
Federated learning (FL) is a method used for training artificial intelligence models with data
from multiple sources while maintaining data anonymity, thus removing many barriers to …
from multiple sources while maintaining data anonymity, thus removing many barriers to …
Harmofl: Harmonizing local and global drifts in federated learning on heterogeneous medical images
Multiple medical institutions collaboratively training a model using federated learning (FL)
has become a promising solution for maximizing the potential of data-driven models, yet the …
has become a promising solution for maximizing the potential of data-driven models, yet the …
Federated learning for healthcare domain-pipeline, applications and challenges
Federated learning is the process of develo** machine learning models over datasets
distributed across data centers such as hospitals, clinical research labs, and mobile devices …
distributed across data centers such as hospitals, clinical research labs, and mobile devices …