The evolution of distributed systems for graph neural networks and their origin in graph processing and deep learning: A survey

J Vatter, R Mayer, HA Jacobsen - ACM Computing Surveys, 2023 - dl.acm.org
Graph neural networks (GNNs) are an emerging research field. This specialized deep
neural network architecture is capable of processing graph structured data and bridges the …

Graph neural network for traffic forecasting: A survey

W Jiang, J Luo - Expert systems with applications, 2022 - Elsevier
Traffic forecasting is important for the success of intelligent transportation systems. Deep
learning models, including convolution neural networks and recurrent neural networks, have …

The emerging graph neural networks for intelligent fault diagnostics and prognostics: A guideline and a benchmark study

T Li, Z Zhou, S Li, C Sun, R Yan, X Chen - Mechanical Systems and Signal …, 2022 - Elsevier
Deep learning (DL)-based methods have advanced the field of Prognostics and Health
Management (PHM) in recent years, because of their powerful feature representation ability …

ROLAND: graph learning framework for dynamic graphs

J You, T Du, J Leskovec - Proceedings of the 28th ACM SIGKDD …, 2022 - dl.acm.org
Graph Neural Networks (GNNs) have been successfully applied to many real-world static
graphs. However, the success of static graphs has not fully translated to dynamic graphs due …

Long sequence time-series forecasting with deep learning: A survey

Z Chen, M Ma, T Li, H Wang, C Li - Information Fusion, 2023 - Elsevier
The development of deep learning technology has brought great improvements to the field
of time series forecasting. Short sequence time-series forecasting no longer satisfies the …

Traffic prediction using artificial intelligence: Review of recent advances and emerging opportunities

M Shaygan, C Meese, W Li, XG Zhao… - … research part C: emerging …, 2022 - Elsevier
Traffic prediction plays a crucial role in alleviating traffic congestion which represents a
critical problem globally, resulting in negative consequences such as lost hours of additional …

Using support vector regression and K-nearest neighbors for short-term traffic flow prediction based on maximal information coefficient

G Lin, A Lin, D Gu - Information Sciences, 2022 - Elsevier
The prediction of short-term traffic flow is critical for improving service levels for drivers and
passengers as well as enhancing the efficiency of traffic management in the urban …

Dynamic graph convolutional network for long-term traffic flow prediction with reinforcement learning

H Peng, B Du, M Liu, M Liu, S Ji, S Wang, X Zhang… - Information …, 2021 - Elsevier
Exploiting deep learning techniques for traffic flow prediction has become increasingly
widespread. Most existing studies combine CNN or GCN with recurrent neural network to …

Dynamic network embedding survey

G Xue, M Zhong, J Li, J Chen, C Zhai, R Kong - Neurocomputing, 2022 - Elsevier
Since many real world networks are evolving over time, such as social networks and user-
item networks, there are increasing research efforts on dynamic network embedding in …

Exploiting dynamic spatio-temporal correlations for citywide traffic flow prediction using attention based neural networks

A Ali, Y Zhu, M Zakarya - Information Sciences, 2021 - Elsevier
For intelligent transportation systems (ITS), predicting urban traffic crowd flows is of great
importance. However, it is challenging to represent various complex spatial relationships …