Quantum machine learning: a classical perspective

C Ciliberto, M Herbster, AD Ialongo… - … of the Royal …, 2018 - royalsocietypublishing.org
Recently, increased computational power and data availability, as well as algorithmic
advances, have led machine learning (ML) techniques to impressive results in regression …

A comprehensive and systematic look up into deep learning based object detection techniques: A review

VK Sharma, RN Mir - Computer Science Review, 2020 - Elsevier
Object detection can be regarded as one of the most fundamental and challenging visual
recognition task in computer vision and it has received great attention over the past few …

Tensorf: Tensorial radiance fields

A Chen, Z Xu, A Geiger, J Yu, H Su - European conference on computer …, 2022 - Springer
We present TensoRF, a novel approach to model and reconstruct radiance fields. Unlike
NeRF that purely uses MLPs, we model the radiance field of a scene as a 4D tensor, which …

A survey of deep learning-based object detection

L Jiao, F Zhang, F Liu, S Yang, L Li, Z Feng… - IEEE access, 2019 - ieeexplore.ieee.org
Object detection is one of the most important and challenging branches of computer vision,
which has been widely applied in people's life, such as monitoring security, autonomous …

Tensor robust principal component analysis with a new tensor nuclear norm

C Lu, J Feng, Y Chen, W Liu, Z Lin… - IEEE transactions on …, 2019 - ieeexplore.ieee.org
In this paper, we consider the Tensor Robust Principal Component Analysis (TRPCA)
problem, which aims to exactly recover the low-rank and sparse components from their sum …

Tensor methods in computer vision and deep learning

Y Panagakis, J Kossaifi, GG Chrysos… - Proceedings of the …, 2021 - ieeexplore.ieee.org
Tensors, or multidimensional arrays, are data structures that can naturally represent visual
data of multiple dimensions. Inherently able to efficiently capture structured, latent semantic …

Multilayer sparsity-based tensor decomposition for low-rank tensor completion

J Xue, Y Zhao, S Huang, W Liao… - … on Neural Networks …, 2021 - ieeexplore.ieee.org
Existing methods for tensor completion (TC) have limited ability for characterizing low-rank
(LR) structures. To depict the complex hierarchical knowledge with implicit sparsity attributes …

RadioUNet: Fast radio map estimation with convolutional neural networks

R Levie, Ç Yapar, G Kutyniok… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
In this paper we propose a highly efficient and very accurate deep learning method for
estimating the propagation pathloss from a point (transmitter location) to any point on a …

Tensor robust principal component analysis: Exact recovery of corrupted low-rank tensors via convex optimization

C Lu, J Feng, Y Chen, W Liu, Z Lin… - Proceedings of the IEEE …, 2016 - cv-foundation.org
This paper studies the Tensor Robust Principal Component (TRPCA) problem which
extends the known Robust PCA to the tensor case. Our model is based on a new tensor …

Tensor decompositions for signal processing applications: From two-way to multiway component analysis

A Cichocki, D Mandic, L De Lathauwer… - IEEE signal …, 2015 - ieeexplore.ieee.org
The widespread use of multisensor technology and the emergence of big data sets have
highlighted the limitations of standard flat-view matrix models and the necessity to move …