Diffusion models: A comprehensive survey of methods and applications

L Yang, Z Zhang, Y Song, S Hong, R Xu, Y Zhao… - ACM Computing …, 2023 - dl.acm.org
Diffusion models have emerged as a powerful new family of deep generative models with
record-breaking performance in many applications, including image synthesis, video …

Diffusion models in vision: A survey

FA Croitoru, V Hondru, RT Ionescu… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
Denoising diffusion models represent a recent emerging topic in computer vision,
demonstrating remarkable results in the area of generative modeling. A diffusion model is a …

Adversarial diffusion distillation

A Sauer, D Lorenz, A Blattmann… - European Conference on …, 2024 - Springer
Abstract We introduce Adversarial Diffusion Distillation (ADD), a novel training approach that
efficiently samples large-scale foundational image diffusion models in just 1–4 steps while …

Open-vocabulary panoptic segmentation with text-to-image diffusion models

J Xu, S Liu, A Vahdat, W Byeon… - Proceedings of the …, 2023 - openaccess.thecvf.com
We present ODISE: Open-vocabulary DIffusion-based panoptic SEgmentation, which unifies
pre-trained text-image diffusion and discriminative models to perform open-vocabulary …

Diffusion models beat gans on image synthesis

P Dhariwal, A Nichol - Advances in neural information …, 2021 - proceedings.neurips.cc
We show that diffusion models can achieve image sample quality superior to the current
state-of-the-art generative models. We achieve this on unconditional image synthesis by …

Denoising diffusion implicit models

J Song, C Meng, S Ermon - arxiv preprint arxiv:2010.02502, 2020 - arxiv.org
Denoising diffusion probabilistic models (DDPMs) have achieved high quality image
generation without adversarial training, yet they require simulating a Markov chain for many …

Score-based generative modeling through stochastic differential equations

Y Song, J Sohl-Dickstein, DP Kingma, A Kumar… - arxiv preprint arxiv …, 2020 - arxiv.org
Creating noise from data is easy; creating data from noise is generative modeling. We
present a stochastic differential equation (SDE) that smoothly transforms a complex data …

Sdedit: Guided image synthesis and editing with stochastic differential equations

C Meng, Y He, Y Song, J Song, J Wu, JY Zhu… - arxiv preprint arxiv …, 2021 - arxiv.org
Guided image synthesis enables everyday users to create and edit photo-realistic images
with minimum effort. The key challenge is balancing faithfulness to the user input (eg, hand …

Cascaded diffusion models for high fidelity image generation

J Ho, C Saharia, W Chan, DJ Fleet, M Norouzi… - Journal of Machine …, 2022 - jmlr.org
We show that cascaded diffusion models are capable of generating high fidelity images on
the class-conditional ImageNet generation benchmark, without any assistance from auxiliary …

Diffusionclip: Text-guided diffusion models for robust image manipulation

G Kim, T Kwon, JC Ye - … of the IEEE/CVF conference on …, 2022 - openaccess.thecvf.com
Recently, GAN inversion methods combined with Contrastive Language-Image Pretraining
(CLIP) enables zero-shot image manipulation guided by text prompts. However, their …