Multi-agent reinforcement learning: A review of challenges and applications

L Canese, GC Cardarilli, L Di Nunzio, R Fazzolari… - Applied Sciences, 2021 - mdpi.com
In this review, we present an analysis of the most used multi-agent reinforcement learning
algorithms. Starting with the single-agent reinforcement learning algorithms, we focus on the …

Machine learning in additive manufacturing: State-of-the-art and perspectives

C Wang, XP Tan, SB Tor, CS Lim - Additive Manufacturing, 2020 - Elsevier
Additive manufacturing (AM) has emerged as a disruptive digital manufacturing technology.
However, its broad adoption in industry is still hindered by high entry barriers of design for …

Multi-agent deep reinforcement learning: a survey

S Gronauer, K Diepold - Artificial Intelligence Review, 2022 - Springer
The advances in reinforcement learning have recorded sublime success in various domains.
Although the multi-agent domain has been overshadowed by its single-agent counterpart …

Deep learning for safe autonomous driving: Current challenges and future directions

K Muhammad, A Ullah, J Lloret… - IEEE Transactions …, 2020 - ieeexplore.ieee.org
Advances in information and signal processing technologies have a significant impact on
autonomous driving (AD), improving driving safety while minimizing the efforts of human …

Is pessimism provably efficient for offline rl?

Y **, Z Yang, Z Wang - International Conference on …, 2021 - proceedings.mlr.press
We study offline reinforcement learning (RL), which aims to learn an optimal policy based on
a dataset collected a priori. Due to the lack of further interactions with the environment …

Deep reinforcement learning for autonomous driving: A survey

BR Kiran, I Sobh, V Talpaert, P Mannion… - IEEE transactions on …, 2021 - ieeexplore.ieee.org
With the development of deep representation learning, the domain of reinforcement learning
(RL) has become a powerful learning framework now capable of learning complex policies …

Multi-agent deep reinforcement learning for multi-robot applications: A survey

J Orr, A Dutta - Sensors, 2023 - mdpi.com
Deep reinforcement learning has produced many success stories in recent years. Some
example fields in which these successes have taken place include mathematics, games …

Multi-agent reinforcement learning: A selective overview of theories and algorithms

K Zhang, Z Yang, T Başar - Handbook of reinforcement learning and …, 2021 - Springer
Recent years have witnessed significant advances in reinforcement learning (RL), which
has registered tremendous success in solving various sequential decision-making problems …

A survey of deep learning techniques for autonomous driving

S Grigorescu, B Trasnea, T Cocias… - Journal of field …, 2020 - Wiley Online Library
The last decade witnessed increasingly rapid progress in self‐driving vehicle technology,
mainly backed up by advances in the area of deep learning and artificial intelligence (AI) …

Deep reinforcement learning in computer vision: a comprehensive survey

N Le, VS Rathour, K Yamazaki, K Luu… - Artificial Intelligence …, 2022 - Springer
Deep reinforcement learning augments the reinforcement learning framework and utilizes
the powerful representation of deep neural networks. Recent works have demonstrated the …