A review of feature selection methods in medical applications

B Remeseiro, V Bolon-Canedo - Computers in biology and medicine, 2019 - Elsevier
Feature selection is a preprocessing technique that identifies the key features of a given
problem. It has traditionally been applied in a wide range of problems that include biological …

Feature selection for text classification: A review

X Deng, Y Li, J Weng, J Zhang - Multimedia Tools and Applications, 2019 - Springer
Big multimedia data is heterogeneous in essence, that is, the data may be a mixture of
video, audio, text, and images. This is due to the prevalence of novel applications in recent …

Hierarchical fully convolutional network for joint atrophy localization and Alzheimer's disease diagnosis using structural MRI

C Lian, M Liu, J Zhang, D Shen - IEEE transactions on pattern …, 2018 - ieeexplore.ieee.org
Structural magnetic resonance imaging (sMRI) has been widely used for computer-aided
diagnosis of neurodegenerative disorders, eg, Alzheimer's disease (AD), due to its …

Hi-net: hybrid-fusion network for multi-modal MR image synthesis

T Zhou, H Fu, G Chen, J Shen… - IEEE transactions on …, 2020 - ieeexplore.ieee.org
Magnetic resonance imaging (MRI) is a widely used neuroimaging technique that can
provide images of different contrasts (ie, modalities). Fusing this multi-modal data has …

Hybrid high-order functional connectivity networks using resting-state functional MRI for mild cognitive impairment diagnosis

Y Zhang, H Zhang, X Chen, SW Lee, D Shen - Scientific reports, 2017 - nature.com
Conventional functional connectivity (FC), referred to as low-order FC, estimates temporal
correlation of the resting-state functional magnetic resonance imaging (rs-fMRI) time series …

Multimodal and multiscale deep neural networks for the early diagnosis of Alzheimer's disease using structural MR and FDG-PET images

D Lu, K Popuri, GW Ding, R Balachandar, MF Beg - Scientific reports, 2018 - nature.com
Alzheimer's Disease (AD) is a progressive neurodegenerative disease where biomarkers for
disease based on pathophysiology may be able to provide objective measures for disease …

Effective feature learning and fusion of multimodality data using stage‐wise deep neural network for dementia diagnosis

T Zhou, KH Thung, X Zhu, D Shen - Human brain map**, 2019 - Wiley Online Library
In this article, the authors aim to maximally utilize multimodality neuroimaging and genetic
data for identifying Alzheimer's disease (AD) and its prodromal status, Mild Cognitive …

Deep learning framework for Alzheimer's disease diagnosis via 3D-CNN and FSBi-LSTM

C Feng, A Elazab, P Yang, T Wang, F Zhou, H Hu… - IEEE …, 2019 - ieeexplore.ieee.org
Alzheimer's disease (AD) is an irreversible progressive neurodegenerative disorder. Mild
cognitive impairment (MCI) is the prodromal state of AD, which is further classified into a …

One-step multi-view spectral clustering

X Zhu, S Zhang, W He, R Hu, C Lei… - IEEE Transactions on …, 2018 - ieeexplore.ieee.org
Previous multi-view spectral clustering methods are a two-step strategy, which first learns a
fixed common representation (or common affinity matrix) of all the views from original data …

Recent publications from the Alzheimer's Disease Neuroimaging Initiative: Reviewing progress toward improved AD clinical trials

MW Weiner, DP Veitch, PS Aisen, LA Beckett… - Alzheimer's & …, 2017 - Elsevier
Abstract Introduction The Alzheimer's Disease Neuroimaging Initiative (ADNI) has continued
development and standardization of methodologies for biomarkers and has provided an …